These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3819729)

  • 61. Schwann cells: early lineage, regulation of proliferation and control of myelin formation.
    Jessen KR; Mirsky R
    Curr Opin Neurobiol; 1992 Oct; 2(5):575-81. PubMed ID: 1422113
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Role of cyclic AMP and proliferation controls in Schwann cell differentiation.
    Jessen KR; Mirsky R; Morgan L
    Ann N Y Acad Sci; 1991; 633():78-89. PubMed ID: 1665043
    [No Abstract]   [Full Text] [Related]  

  • 63. Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury.
    Salzer JL; Bunge RP
    J Cell Biol; 1980 Mar; 84(3):739-52. PubMed ID: 6244318
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Schwann cell expression of a major myelin glycoprotein in the absence of myelin assembly.
    Poduslo JF; Berg CT; Dyck PJ
    Proc Natl Acad Sci U S A; 1984 Mar; 81(6):1864-6. PubMed ID: 6584919
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Axolemma-enriched fractions isolated from PNS and CNS are mitogenic for cultured Schwann cells.
    DeVries GH; Salzer JL; Bunge RP
    Brain Res; 1982 Feb; 255(2):295-9. PubMed ID: 7055726
    [No Abstract]   [Full Text] [Related]  

  • 66. Inhibition of reactive gliosis in vivo by exogenous axolemma and myelin fractions.
    Politis MJ
    Exp Neurol; 1988 May; 100(2):288-96. PubMed ID: 3360070
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Experimental inhibition of reactive gliotic-like changes in astrocytic cultures.
    Politis MJ; Miller JE
    Exp Neurol; 1988 May; 100(2):297-304. PubMed ID: 2834212
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Phorbol ester intracerebroventricularly induces a behavioral hypoactivity that is not affected by chronic or acute lithium.
    Patishi Y; Bersudsky Y; Belmaker RH
    Eur Neuropsychopharmacol; 1996 Mar; 6(1):39-41. PubMed ID: 8866936
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Enzyme-linked immunosorbent assay (ELISA) for antibodies to human myelin and axolemma-enriched fractions.
    Calabrese VP; Wallen W; Castellano G; Ward L; Anderson MG; DeVries GH
    Neurosci Lett; 1981 Jan; 21(2):189-95. PubMed ID: 7012693
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Isolation of axolemma-enriched fractions from bovine central nervous system.
    De Vries GH
    Neurosci Lett; 1976 Oct; 3(3):117-22. PubMed ID: 19604872
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enzyme and protein composition of myelin isolated in the presence of EGTA.
    Burgisser P; Matthieu JM
    Neurochem Int; 1981 Mar; 3(1):53-8. PubMed ID: 20487808
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The distribution of lithium in amphibian gastrulae autoradiographically demonstrated.
    DENT JN; SHEPPARD CW
    J Exp Zool; 1957 Aug; 135(3):587-97. PubMed ID: 13491783
    [No Abstract]   [Full Text] [Related]  

  • 73. Equivalent pore radius of the axolemma of resting and stimulated squid axons.
    Villegas R; Bruzual IB; Villegas GM
    J Gen Physiol; 1968 May; 51(5):81-92. PubMed ID: 19873615
    [No Abstract]   [Full Text] [Related]  

  • 74. Lithium chooses the channel.
    Greed S
    Nat Rev Chem; 2024 Feb; 8(2):83. PubMed ID: 38263301
    [No Abstract]   [Full Text] [Related]  

  • 75. Lithium promotes proliferation and suppresses migration of Schwann cells.
    Gu XK; Li XR; Lu ML; Xu H
    Neural Regen Res; 2020 Oct; 15(10):1955-1961. PubMed ID: 32246645
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Lithium Reversibly Inhibits Schwann Cell Proliferation and Differentiation Without Inducing Myelin Loss.
    PiƱero G; Berg R; Andersen ND; Setton-Avruj P; Monje PV
    Mol Neurobiol; 2017 Dec; 54(10):8287-8307. PubMed ID: 27917448
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells treated by GSK-3 inhibitors.
    Eslaminejad MB; Karimi N; Shahhoseini M
    Histochem Cell Biol; 2013 Dec; 140(6):623-33. PubMed ID: 23839780
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhanced lithium-induced brain recovery following cranial irradiation is not impeded by inflammation.
    Malaterre J; McPherson CS; Denoyer D; Lai E; Hagekyriakou J; Lightowler S; Shudo K; Ernst M; Ashley DM; Short JL; Wheeler G; Ramsay RG
    Stem Cells Transl Med; 2012 Jun; 1(6):469-79. PubMed ID: 23197851
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of lithium on Schwann cell proliferation stimulated by axolemma- and myelin-enriched fractions.
    Yoshino JE; DeVries GH
    J Neurochem; 1987 Apr; 48(4):1270-7. PubMed ID: 3819729
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cyclic AMP and calcium as potential mediators of stimulation of cultured Schwann cell proliferation by axolemma-enriched and myelin-enriched membrane fractions.
    Meador-Woodruff JH; Lewis BL; DeVries GH
    Biochem Biophys Res Commun; 1984 Jul; 122(1):373-80. PubMed ID: 6331451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.