These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38197486)

  • 1. A whole-cell hypersensitive biosensor for beta-lactams based on the AmpR-AmpC regulatory circuit from the Antarctic Pseudomonas sp. IB20.
    Higuera-Llantén S; Alcalde-Rico M; Vasquez-Ponce F; Ibacache-Quiroga C; Blazquez J; Olivares-Pacheco J
    Microb Biotechnol; 2024 Jan; 17(1):e14385. PubMed ID: 38197486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PBP Target Profiling by β-Lactam and β-Lactamase Inhibitors in Intact Pseudomonas aeruginosa: Effects of the Intrinsic and Acquired Resistance Determinants on the Periplasmic Drug Availability.
    Montaner M; Lopez-Argüello S; Oliver A; Moya B
    Microbiol Spectr; 2023 Feb; 11(1):e0303822. PubMed ID: 36475840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Pseudomonas aeruginosa AmpR on β-lactam and non-β-lactam transient cross-resistance upon pre-exposure to subinhibitory concentrations of antibiotics.
    Kumari H; Balasubramanian D; Zincke D; Mathee K
    J Med Microbiol; 2014 Apr; 63(Pt 4):544-555. PubMed ID: 24464693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay.
    Okamoto K; Gotoh N; Nishino T
    Antimicrob Agents Chemother; 2001 Jul; 45(7):1964-71. PubMed ID: 11408209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins in AmpC expression, β-lactam resistance, and peptidoglycan structure.
    Ropy A; Cabot G; Sánchez-Diener I; Aguilera C; Moya B; Ayala JA; Oliver A
    Antimicrob Agents Chemother; 2015 Jul; 59(7):3925-34. PubMed ID: 25896695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A potential space-making role in cell wall biogenesis for SltB1and DacB revealed by a beta-lactamase induction phenotype in
    Gyger J; Torrens G; Cava F; Bernhardt TG; Fumeaux C
    mBio; 2024 Jul; 15(7):e0141924. PubMed ID: 38920394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins.
    Berrazeg M; Jeannot K; Ntsogo Enguéné VY; Broutin I; Loeffert S; Fournier D; Plésiat P
    Antimicrob Agents Chemother; 2015 Oct; 59(10):6248-55. PubMed ID: 26248364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of beta-lactamases with sanfetrinem (GV 104326) compared to those with imipenem and with oral beta-lactams.
    Babini GS; Yuan M; Livermore DM
    Antimicrob Agents Chemother; 1998 May; 42(5):1168-75. PubMed ID: 9593145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional characterization of Pseudomonas aeruginosa global regulator AmpR.
    Caille O; Zincke D; Merighi M; Balasubramanian D; Kumari H; Kong KF; Silva-Herzog E; Narasimhan G; Schneper L; Lory S; Mathee K
    J Bacteriol; 2014 Nov; 196(22):3890-902. PubMed ID: 25182487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa.
    Rodríguez-Martínez JM; Poirel L; Nordmann P
    Antimicrob Agents Chemother; 2009 May; 53(5):1766-71. PubMed ID: 19258272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Enzymatic Activity in the Biological Cost Associated with the Production of AmpC β-Lactamases in Pseudomonas aeruginosa.
    Barceló IM; Jordana-Lluch E; Escobar-Salom M; Torrens G; Fraile-Ribot PA; Cabot G; Mulet X; Zamorano L; Juan C; Oliver A
    Microbiol Spectr; 2022 Oct; 10(5):e0270022. PubMed ID: 36214681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex.
    Guérin F; Isnard C; Cattoir V; Giard JC
    Antimicrob Agents Chemother; 2015 Dec; 59(12):7753-61. PubMed ID: 26438498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A luminescent Escherichia coli biosensor for the high throughput detection of beta-lactams.
    Valtonen SJ; Kurittu JS; Karp MT
    J Biomol Screen; 2002 Apr; 7(2):127-34. PubMed ID: 12006111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization, cloning and sequence analysis of the inducible Ochrobactrum anthropi AmpC beta-lactamase.
    Higgins CS; Avison MB; Jamieson L; Simm AM; Bennett PM; Walsh TR
    J Antimicrob Chemother; 2001 Jun; 47(6):745-54. PubMed ID: 11389106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of chromosomal class C beta-lactamase and its regulatory gene in Ochrobactrum anthropi.
    Nadjar D; Labia R; Cerceau C; Bizet C; Philippon A; Arlet G
    Antimicrob Agents Chemother; 2001 Aug; 45(8):2324-30. PubMed ID: 11451692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes to its peptidoglycan-remodeling enzyme repertoire modulate β-lactam resistance in Pseudomonas aeruginosa.
    Cavallari JF; Lamers RP; Scheurwater EM; Matos AL; Burrows LL
    Antimicrob Agents Chemother; 2013 Jul; 57(7):3078-84. PubMed ID: 23612194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AmpG inactivation restores susceptibility of pan-beta-lactam-resistant Pseudomonas aeruginosa clinical strains.
    Zamorano L; Reeve TM; Juan C; Moyá B; Cabot G; Vocadlo DJ; Mark BL; Oliver A
    Antimicrob Agents Chemother; 2011 May; 55(5):1990-6. PubMed ID: 21357303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of novel genes responsible for overexpression of ampC in Pseudomonas aeruginosa PAO1.
    Tsutsumi Y; Tomita H; Tanimoto K
    Antimicrob Agents Chemother; 2013 Dec; 57(12):5987-93. PubMed ID: 24041903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulopenem: An Intravenous and Oral Penem for the Treatment of Urinary Tract Infections Due to Multidrug-Resistant Bacteria.
    Zhanel GG; Pozdirca M; Golden AR; Lawrence CK; Zelenitsky S; Berry L; Schweizer F; Bay D; Adam H; Zhanel MA; Lagacé-Wiens P; Walkty A; Irfan N; Naber K; Lynch JP; Karlowsky JA
    Drugs; 2022 Apr; 82(5):533-557. PubMed ID: 35294769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomal beta-lactam resistance in enterobacteria.
    Normark S; Lindquist S; Lindberg F
    Scand J Infect Dis Suppl; 1986; 49():38-45. PubMed ID: 3547624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.