These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38197486)

  • 21. Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms.
    Bagge N; Hentzer M; Andersen JB; Ciofu O; Givskov M; Høiby N
    Antimicrob Agents Chemother; 2004 Apr; 48(4):1168-74. PubMed ID: 15047517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC.
    Cabot G; Bruchmann S; Mulet X; Zamorano L; Moyà B; Juan C; Haussler S; Oliver A
    Antimicrob Agents Chemother; 2014 Jun; 58(6):3091-9. PubMed ID: 24637685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Drug Resistance Determinants in a Clinical Isolate of Pseudomonas aeruginosa by High-Density Transposon Mutagenesis.
    Sonnabend MS; Klein K; Beier S; Angelov A; Kluj R; Mayer C; Groß C; Hofmeister K; Beuttner A; Willmann M; Peter S; Oberhettinger P; Schmidt A; Autenrieth IB; Schütz M; Bohn E
    Antimicrob Agents Chemother; 2020 Feb; 64(3):. PubMed ID: 31818817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potentiation of beta-lactams against Pseudomonas aeruginosa strains by Ro 48-1256, a bridged monobactam inhibitor of AmpC beta-lactamases.
    Livermore DM; Chen HY
    J Antimicrob Chemother; 1997 Sep; 40(3):335-43. PubMed ID: 9338484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring sequence requirements for C₃/C₄ carboxylate recognition in the Pseudomonas aeruginosa cephalosporinase: Insights into plasticity of the AmpC β-lactamase.
    Drawz SM; Taracila M; Caselli E; Prati F; Bonomo RA
    Protein Sci; 2011 Jun; 20(6):941-58. PubMed ID: 21404358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The sentinel role of peptidoglycan recycling in the β-lactam resistance of the Gram-negative Enterobacteriaceae and Pseudomonas aeruginosa.
    Fisher JF; Mobashery S
    Bioorg Chem; 2014 Oct; 56():41-8. PubMed ID: 24955547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC beta-lactamase expression.
    Langaee TY; Gagnon L; Huletsky A
    Antimicrob Agents Chemother; 2000 Mar; 44(3):583-9. PubMed ID: 10681322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes.
    Balasubramanian D; Schneper L; Merighi M; Smith R; Narasimhan G; Lory S; Mathee K
    PLoS One; 2012; 7(3):e34067. PubMed ID: 22479525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Small molecule inhibitors of a glycoside hydrolase attenuate inducible AmpC-mediated beta-lactam resistance.
    Stubbs KA; Balcewich M; Mark BL; Vocadlo DJ
    J Biol Chem; 2007 Jul; 282(29):21382-91. PubMed ID: 17439950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Mechanisms of resistance in Enterobacteriaceae towards beta-lactamase antibiotics].
    Susić E
    Acta Med Croatica; 2004; 58(4):307-12. PubMed ID: 15700687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The β-lactamase gene regulator AmpR is a tetramer that recognizes and binds the D-Ala-D-Ala motif of its repressor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide.
    Vadlamani G; Thomas MD; Patel TR; Donald LJ; Reeve TM; Stetefeld J; Standing KG; Vocadlo DJ; Mark BL
    J Biol Chem; 2015 Jan; 290(5):2630-43. PubMed ID: 25480792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High specificity of cphA-encoded metallo-beta-lactamase from Aeromonas hydrophila AE036 for carbapenems and its contribution to beta-lactam resistance.
    Segatore B; Massidda O; Satta G; Setacci D; Amicosante G
    Antimicrob Agents Chemother; 1993 Jun; 37(6):1324-8. PubMed ID: 8328781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-existence of Pseudomonas-derived cephalosporinase among plasmid encoded CMY-2 harbouring isolates of Pseudomonas aeruginosa in north India.
    Upadhyay S; Mishra S; Sen MR; Banerjee T; Bhattacharjee A
    Indian J Med Microbiol; 2013; 31(3):257-60. PubMed ID: 23883711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France.
    Poirel L; Naas T; Nicolas D; Collet L; Bellais S; Cavallo JD; Nordmann P
    Antimicrob Agents Chemother; 2000 Apr; 44(4):891-7. PubMed ID: 10722487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emergence of ertapenem resistance in an Escherichia coli clinical isolate producing extended-spectrum beta-lactamase AmpC.
    Guillon H; Tande D; Mammeri H
    Antimicrob Agents Chemother; 2011 Sep; 55(9):4443-6. PubMed ID: 21746958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contributions of the AmpC beta-lactamase and the AcrAB multidrug efflux system in intrinsic resistance of Escherichia coli K-12 to beta-lactams.
    Mazzariol A; Cornaglia G; Nikaido H
    Antimicrob Agents Chemother; 2000 May; 44(5):1387-90. PubMed ID: 10770787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of Peptidoglycan Recycling Blockade and Expression of Horizontally Acquired β-Lactamases on Pseudomonas aeruginosa Virulence.
    Barceló IM; Torrens G; Escobar-Salom M; Jordana-Lluch E; Capó-Bauzá MM; Ramón-Pallín C; García-Cuaresma D; Fraile-Ribot PA; Mulet X; Oliver A; Juan C
    Microbiol Spectr; 2022 Feb; 10(1):e0201921. PubMed ID: 35171032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates.
    Quale J; Bratu S; Gupta J; Landman D
    Antimicrob Agents Chemother; 2006 May; 50(5):1633-41. PubMed ID: 16641429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in Pseudomonas aeruginosa.
    Barnes MD; Taracila MA; Rutter JD; Bethel CR; Galdadas I; Hujer AM; Caselli E; Prati F; Dekker JP; Papp-Wallace KM; Haider S; Bonomo RA
    mBio; 2018 Dec; 9(6):. PubMed ID: 30538183
    [No Abstract]   [Full Text] [Related]  

  • 40. Extension of resistance to cefepime and cefpirome associated to a six amino acid deletion in the H-10 helix of the cephalosporinase of an Enterobacter cloacae clinical isolate.
    Barnaud G; Labia R; Raskine L; Sanson-Le Pors MJ; Philippon A; Arlet G
    FEMS Microbiol Lett; 2001 Feb; 195(2):185-90. PubMed ID: 11179650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.