These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 38197770)
1. A new particle filter algorithm filtering motion artifact noise for clean electrocardiogram signals in wearable health monitoring system. Ma M; Du M; Feng Q; Xiahou S Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38197770 [TBL] [Abstract][Full Text] [Related]
2. Adaptive Motion Artifact Reduction in Wearable ECG Measurements Using Impedance Pneumography Signal. An X; Liu Y; Zhao Y; Lu S; Stylios GK; Liu Q Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897997 [TBL] [Abstract][Full Text] [Related]
3. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises. Pankaj ; Kumar A; Komaragiri R; Kumar M Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340 [TBL] [Abstract][Full Text] [Related]
4. Enhancing visual seismocardiography in noisy environments with adaptive bidirectional filtering for Cardiac Health Monitoring. N G; Bhat CR; Tr M; Yimer TE BMC Med Inform Decis Mak; 2024 Oct; 24(1):282. PubMed ID: 39354526 [TBL] [Abstract][Full Text] [Related]
5. Using the Redundant Convolutional Encoder-Decoder to Denoise QRS Complexes in ECG Signals Recorded with an Armband Wearable Device. Reljin N; Lazaro J; Hossain MB; Noh YS; Cho CH; Chon KH Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824420 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Motion Artefact Reduction Methods and the Implementation of Adaptive Motion Artefact Reduction in Wearable Electrocardiogram Monitoring. An X; K Stylios G Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155984 [TBL] [Abstract][Full Text] [Related]
7. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618 [TBL] [Abstract][Full Text] [Related]
8. Reduction in the Motion Artifacts in Noncontact ECG Measurements Using a Novel Designed Electrode Structure. Ding J; Tang Y; Chang R; Li Y; Zhang L; Yan F Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679753 [TBL] [Abstract][Full Text] [Related]
9. Two-stage motion artefact reduction algorithm for electrocardiogram using weighted adaptive noise cancelling and recursive Hampel filter. Ghaleb FA; Kamat MB; Salleh M; Rohani MF; Abd Razak S PLoS One; 2018; 13(11):e0207176. PubMed ID: 30457996 [TBL] [Abstract][Full Text] [Related]
10. ECG Denoising Using Marginalized Particle Extended Kalman Filter With an Automatic Particle Weighting Strategy. Hesar HD; Mohebbi M IEEE J Biomed Health Inform; 2017 May; 21(3):635-644. PubMed ID: 27333615 [TBL] [Abstract][Full Text] [Related]
11. A Wearable Pulse Oximeter With Wireless Communication and Motion Artifact Tailoring for Continuous Use. Chacon PJ; Limeng Pu ; da Costa TH; Young-Ho Shin ; Ghomian T; Shamkhalichenar H; Hsiao-Chun Wu ; Irving BA; Jin-Woo Choi IEEE Trans Biomed Eng; 2019 Jun; 66(6):1505-1513. PubMed ID: 30307850 [TBL] [Abstract][Full Text] [Related]
12. Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography. Han H; Kim MJ; Kim J Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1538-41. PubMed ID: 18002262 [TBL] [Abstract][Full Text] [Related]
13. RPCA-based detection and quantification of motion artifacts in ECG signals. Kher R; Vala D; Pawar T; Thakar V J Med Eng Technol; 2013 Jan; 37(1):56-60. PubMed ID: 23216384 [TBL] [Abstract][Full Text] [Related]
14. A particle filter framework for the estimation of heart rate from ECG signals corrupted by motion artifacts. Nathan V; Akkaya I; Jafari R Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6560-5. PubMed ID: 26737796 [TBL] [Abstract][Full Text] [Related]
15. An Automatic Method to Reduce Baseline Wander and Motion Artifacts on Ambulatory Electrocardiogram Signals. Li H; Boulanger P Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960263 [TBL] [Abstract][Full Text] [Related]
16. Motion artifact reduction in electrocardiogram using adaptive filtering based on half cell potential monitoring. Ko BH; Lee T; Choi C; Kim YH; Park G; Kang K; Bae SK; Shin K Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1590-3. PubMed ID: 23366209 [TBL] [Abstract][Full Text] [Related]
17. A strong anti-noise segmentation algorithm based on variational mode decomposition and multi-wavelet for wearable heart sound acquisition system. Xiahou S; Liang Y; Ma M; Du M Rev Sci Instrum; 2022 May; 93(5):054102. PubMed ID: 35649757 [TBL] [Abstract][Full Text] [Related]
18. A Wavelet-Based Approach for Motion Artifact Reduction in Ambulatory Seismocardiography. Skoric J; D'Mello Y; Plant DV IEEE J Transl Eng Health Med; 2024; 12():348-358. PubMed ID: 38606390 [TBL] [Abstract][Full Text] [Related]
19. Simple method for adaptive filtering of motion artifacts in E-textile wearable ECG sensors. Alkhidir T; Sluzek A; Yapici MK Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3807-10. PubMed ID: 26737123 [TBL] [Abstract][Full Text] [Related]
20. Particle Filtering and Sensor Fusion for Robust Heart Rate Monitoring Using Wearable Sensors. Nathan V; Jafari R IEEE J Biomed Health Inform; 2018 Nov; 22(6):1834-1846. PubMed ID: 29990023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]