These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 3819778)

  • 21. Temporary adhesions between axons and myelin-forming processes.
    Sims TJ; Gilmore SA; Waxman SG
    Brain Res; 1988 May; 468(2):223-32. PubMed ID: 3133081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macromolecular structure of the Schwann cell membrane. Perinodal microvilli.
    Waxman SG; Black JA
    J Neurol Sci; 1987 Jan; 77(1):23-34. PubMed ID: 3806135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Schwann cell and oligodendrocyte remyelination in lysolecithin-induced lesions in irradiated rat spinal cord.
    Harrison B
    J Neurol Sci; 1985 Feb; 67(2):143-59. PubMed ID: 3981217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regrowth of axons in lesioned adult rat spinal cord: promotion by implants of cultured Schwann cells.
    Paíno CL; Fernandez-Valle C; Bates ML; Bunge MB
    J Neurocytol; 1994 Jul; 23(7):433-52. PubMed ID: 7964912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relation between axons and oligodendroglial cells during initial myelination. I. The glial unit.
    Remahl S; Hilderbrand C
    J Neurocytol; 1990 Jun; 19(3):313-28. PubMed ID: 2391536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution of sodium channels in chronically demyelinated spinal cord axons: immuno-ultrastructural localization and electrophysiological observations.
    Black JA; Felts P; Smith KJ; Kocsis JD; Waxman SG
    Brain Res; 1991 Mar; 544(1):59-70. PubMed ID: 1649663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentiation of the nodal and internodal axolemma in the optic nerves of neonatal rats.
    Oldfield BJ; Bray GM
    J Neurocytol; 1982 Aug; 11(4):627-40. PubMed ID: 7131047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate-like paranodal junctions that assemble during myelination.
    Einheber S; Zanazzi G; Ching W; Scherer S; Milner TA; Peles E; Salzer JL
    J Cell Biol; 1997 Dec; 139(6):1495-506. PubMed ID: 9396755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Astrocytes, but not olfactory ensheathing cells or Schwann cells, promote myelination of CNS axons in vitro.
    Sorensen A; Moffat K; Thomson C; Barnett SC
    Glia; 2008 May; 56(7):750-63. PubMed ID: 18293402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of the axon membrane during differentiation of myelinated fibres in spinal nerve roots.
    Waxman SG; Foster RE
    Proc R Soc Lond B Biol Sci; 1980 Sep; 209(1176):441-6. PubMed ID: 6161376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Abnormalities in Schwann cell sheaths in spinal nerve roots of dystrophic mice.
    Stirling CA
    J Anat; 1975 Feb; 119(Pt 1):169-80. PubMed ID: 1133086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrastructural study on myelination in rat spinal cord during the early postnatal stage.
    Yoshioka T; Inomata K; Sugioka K; Nakamura K
    Brain Dev; 1980; 2(4):337-43. PubMed ID: 7224089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Schwann cell myelination of the myelin deficient rat spinal cord following X-irradiation.
    Duncan ID; Hammang JP; Gilmore SA
    Glia; 1988; 1(3):233-9. PubMed ID: 2976042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination.
    Goebbels S; Oltrogge JH; Kemper R; Heilmann I; Bormuth I; Wolfer S; Wichert SP; Möbius W; Liu X; Lappe-Siefke C; Rossner MJ; Groszer M; Suter U; Frahm J; Boretius S; Nave KA
    J Neurosci; 2010 Jun; 30(26):8953-64. PubMed ID: 20592216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relations between axons and oligodendroglial cells during initial myelination. II. The individual axon.
    Remahl S; Hildebrand C
    J Neurocytol; 1990 Dec; 19(6):883-98. PubMed ID: 2292718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord.
    Nashmi R; Fehlings MG
    Neuroscience; 2001; 104(1):235-51. PubMed ID: 11311546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observations on the interactions of Schwann cells and astrocytes following X-irradiation of neonatal rat spinal cord.
    Blakemore WF; Patterson RC
    J Neurocytol; 1975 Oct; 4(5):573-85. PubMed ID: 1177001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De- and remyelination in spinal roots during normal perinatal development in the cat: a brief summary of structural observations and a conceptual hypothesis.
    Berthold CH; Nilsson RI
    J Anat; 2002 Apr; 200(4):391-403. PubMed ID: 12090405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nerve fibres in spinal cord impact injuries. Part 1. Changes in the myelin sheath during the initial 5 weeks.
    Griffiths IR; McCulloch MC
    J Neurol Sci; 1983 Mar; 58(3):335-49. PubMed ID: 6842262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Internodal microvilli of Schwann cells of myelinated fibres in lizard spinal roots project onto unmyelinated axons.
    Pannese E; Procacci P; Ledda M; Arcidiacono G; Rigamonti L
    J Neurocytol; 1989 Jun; 18(3):295-302. PubMed ID: 2746302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.