These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3819819)

  • 21. Changes in pennation with joint angle and muscle torque: in vivo measurements in human brachialis muscle.
    Herbert RD; Gandevia SC
    J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):523-32. PubMed ID: 7602542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations.
    Song R; Tong KY
    Med Biol Eng Comput; 2005 Jul; 43(4):473-80. PubMed ID: 16255429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast corrective responses are evoked by perturbations approaching the natural variability of posture and movement tasks.
    Crevecoeur F; Kurtzer I; Scott SH
    J Neurophysiol; 2012 May; 107(10):2821-32. PubMed ID: 22357792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-latency responses during reaching account for the mechanical interaction between the shoulder and elbow joints.
    Kurtzer I; Pruszynski JA; Scott SH
    J Neurophysiol; 2009 Nov; 102(5):3004-15. PubMed ID: 19710379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utilization and compensation of interaction torques during ball-throwing movements.
    Hirashima M; Kudo K; Ohtsuki T
    J Neurophysiol; 2003 Apr; 89(4):1784-96. PubMed ID: 12611996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shaping static elbow torque-angle relationships by spinal cord circuits: a theoretical study.
    Windhorst U
    Neuroscience; 1994 Apr; 59(3):713-27. PubMed ID: 8008215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of interaction torques during dart throwing: Differences between novices and experts.
    Rezzoug N; Hansen C; Gorce P; Isableu B
    Hum Mov Sci; 2018 Feb; 57():258-266. PubMed ID: 28919168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural compensation for muscular fatigue: evidence for significant force regulation in man.
    Kirsch RF; Rymer WZ
    J Neurophysiol; 1987 Jun; 57(6):1893-910. PubMed ID: 3598635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organizing principles for single-joint movements. II. A speed-sensitive strategy.
    Corcos DM; Gottlieb GL; Agarwal GC
    J Neurophysiol; 1989 Aug; 62(2):358-68. PubMed ID: 2769335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elbow impedance during goal-directed movements.
    Popescu F; Hidler JM; Rymer WZ
    Exp Brain Res; 2003 Sep; 152(1):17-28. PubMed ID: 12879184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-latency and voluntary responses to an arm displacement can be rapidly attenuated by perturbation offset.
    Kurtzer I; Pruszynski JA; Scott SH
    J Neurophysiol; 2010 Jun; 103(6):3195-204. PubMed ID: 20457850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isometric torque-angle relationship and movement-related activity of human elbow flexors: implications for the equilibrium-point hypothesis.
    Hasan Z; Enoka RM
    Exp Brain Res; 1985; 59(3):441-50. PubMed ID: 4029320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The sense of effort and two models of single-joint motor control.
    Burgess PR; Cooper TA; Gottlieb GL; Latash ML
    Somatosens Mot Res; 1995; 12(3-4):343-58. PubMed ID: 8834307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Precentral unit activity following torque pulse injections into elbow movements.
    Conrad B; Meyer-Lohmann J; Matsunami K; Brooks VB
    Brain Res; 1975 Aug; 94(2):219-36. PubMed ID: 807297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements.
    Galloway JC; Koshland GF
    Exp Brain Res; 2002 Jan; 142(2):163-80. PubMed ID: 11807572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elbow torque ellipses: investigation of the mutual influences of rotation, flexion, and extension torques.
    Guenzkofer F; Bubb H; Bengler K
    Work; 2012; 41 Suppl 1():2260-7. PubMed ID: 22317051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement.
    Cooper SE; Martin JH; Ghez C
    J Neurophysiol; 2000 Oct; 84(4):1988-2000. PubMed ID: 11024092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The neural control of single degree-of-freedom elbow movements. Effect of starting joint position.
    Prodoehl J; Gottlieb GL; Corcos DM
    Exp Brain Res; 2003 Nov; 153(1):7-15. PubMed ID: 14566444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Braking of elbow extension in fast overarm throws made by skilled and unskilled subjects.
    Hore J; Debicki DB; Watts S
    Exp Brain Res; 2005 Jul; 164(3):365-75. PubMed ID: 15883810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.