BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38198524)

  • 1. BRCA1 and ELK-1 regulate neural progenitor cell fate in the optic tectum in response to visual experience in
    Huang LC; McKeown CR; He HY; Ta AC; Cline HT
    Proc Natl Acad Sci U S A; 2024 Jan; 121(3):e2316542121. PubMed ID: 38198524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system.
    Bestman JE; Huang LC; Lee-Osbourne J; Cheung P; Cline HT
    Dev Biol; 2015 Dec; 408(2):269-91. PubMed ID: 25818835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles.
    Bestman JE; Lee-Osbourne J; Cline HT
    J Comp Neurol; 2012 Feb; 520(2):401-33. PubMed ID: 22113462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thyroid Hormone Acts Locally to Increase Neurogenesis, Neuronal Differentiation, and Dendritic Arbor Elaboration in the Tadpole Visual System.
    Thompson CK; Cline HT
    J Neurosci; 2016 Oct; 36(40):10356-10375. PubMed ID: 27707971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual activity regulates neural progenitor cells in developing xenopus CNS through musashi1.
    Sharma P; Cline HT
    Neuron; 2010 Nov; 68(3):442-55. PubMed ID: 21040846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurogenesis is required for behavioral recovery after injury in the visual system of Xenopus laevis.
    McKeown CR; Sharma P; Sharipov HE; Shen W; Cline HT
    J Comp Neurol; 2013 Jul; 521(10):2262-78. PubMed ID: 23238877
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Lau M; Li J; Cline HT
    eNeuro; 2017; 4(4):. PubMed ID: 28795134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles.
    Gambrill AC; Faulkner RL; Cline HT
    J Neurophysiol; 2018 May; 119(5):1947-1961. PubMed ID: 29442555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner.
    Gambrill AC; Faulkner RL; McKeown CR; Cline HT
    J Neurophysiol; 2019 Jan; 121(1):306-320. PubMed ID: 30517041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping neurogenesis onset in the optic tectum of Xenopus laevis.
    Herrgen L; Akerman CJ
    Dev Neurobiol; 2016 Dec; 76(12):1328-1341. PubMed ID: 27012549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. c-Fos oncogene regulator Elk-1 interacts with BRCA1 splice variants BRCA1a/1b and enhances BRCA1a/1b-mediated growth suppression in breast cancer cells.
    Chai Y; Chipitsyna G; Cui J; Liao B; Liu S; Aysola K; Yezdani M; Reddy ES; Rao VN
    Oncogene; 2001 Mar; 20(11):1357-67. PubMed ID: 11313879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sonic Hedgehog Regulation of the Neural Precursor Cell Fate During Chicken Optic Tectum Development.
    Yang C; Li X; Li Q; Li H; Qiao L; Guo Z; Lin J
    J Mol Neurosci; 2018 Feb; 64(2):287-299. PubMed ID: 29285739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HDAC1 regulates the proliferation of radial glial cells in the developing Xenopus tectum.
    Tao Y; Ruan H; Guo X; Li L; Shen W
    PLoS One; 2015; 10(3):e0120118. PubMed ID: 25789466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microinjection of DNA into Eyebuds in Xenopus laevis Embryos and Imaging of GFP Expressing Optic Axonal Arbors in Intact, Living Xenopus Tadpoles.
    Dao S; Jones K; Elul T
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31545319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DSCAM is differentially patterned along the optic axon pathway in the developing Xenopus visual system and guides axon termination at the target.
    Santos RA; Del Rio R; Alvarez AD; Romero G; Vo BZ; Cohen-Cory S
    Neural Dev; 2022 Apr; 17(1):5. PubMed ID: 35422013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S
    Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential thyroid hormone sensitivity of fast cycling progenitors in the neurogenic niches of tadpoles and juvenile frogs.
    Préau L; Le Blay K; Saint Paul E; Morvan-Dubois G; Demeneix BA
    Mol Cell Endocrinol; 2016 Jan; 420():138-51. PubMed ID: 26628040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global hyper-synchronous spontaneous activity in the developing optic tectum.
    Imaizumi K; Shih JY; Farris HE
    Sci Rep; 2013; 3():1552. PubMed ID: 23531884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible developmental stasis in response to nutrient availability in the Xenopus laevis central nervous system.
    McKeown CR; Thompson CK; Cline HT
    J Exp Biol; 2017 Feb; 220(Pt 3):358-368. PubMed ID: 27875263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bulk Dye Loading for In Vivo Calcium Imaging of Visual Responses in Populations of
    Hogg PW; Haas K
    Cold Spring Harb Protoc; 2022 Jan; 2022(1):. PubMed ID: 33782097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.