These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38198664)
1. Local vibration induces changes in spinal and corticospinal excitability in vibrated and antagonist muscles. Amiez N; Martin A; Gaveau J; Julliand S; Papaxanthis C; Paizis C J Neurophysiol; 2024 Feb; 131(2):379-393. PubMed ID: 38198664 [TBL] [Abstract][Full Text] [Related]
2. Acute effects of local vibration inducing tonic vibration reflex or illusion of movement on maximal wrist force production. Amiez N; Géhin P; Martin A; Paizis C J Appl Physiol (1985); 2024 Oct; 137(4):800-813. PubMed ID: 39116345 [TBL] [Abstract][Full Text] [Related]
3. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels. Dongés SC; Taylor JL; Nuzzo JL Exp Physiol; 2019 Apr; 104(4):546-555. PubMed ID: 30690803 [TBL] [Abstract][Full Text] [Related]
4. Boosting and consolidating the proprioceptive cortical aftereffect by combining tendon vibration and repetitive TMS over primary motor cortex. Perasso L; Avanzino L; Lagravinese G; Giannini A; Faelli EL; Bisio A; Quartarone A; Rizzo V; Ruggeri P; Bove M Neurol Sci; 2019 Jan; 40(1):147-154. PubMed ID: 30327958 [TBL] [Abstract][Full Text] [Related]
5. Vibration-Induced Kinesthetic Illusions and Corticospinal Excitability Changes. Mancheva K; Rollnik JD; Wolf W; Dengler R; Kossev A J Mot Behav; 2017; 49(3):299-305. PubMed ID: 27588516 [TBL] [Abstract][Full Text] [Related]
8. Antagonist motor responses correlate with kinesthetic illusions induced by tendon vibration. Calvin-Figuière S; Romaiguère P; Gilhodes JC; Roll JP Exp Brain Res; 1999 Feb; 124(3):342-50. PubMed ID: 9989440 [TBL] [Abstract][Full Text] [Related]
9. Acute effects of quadriceps muscle versus tendon prolonged local vibration on force production capacities and central nervous system excitability. Kennouche D; Varesco G; Espeit L; Féasson L; Souron R; Rozand V; Millet GY; Lapole T Eur J Appl Physiol; 2022 Nov; 122(11):2451-2461. PubMed ID: 36001143 [TBL] [Abstract][Full Text] [Related]
10. Corticospinal excitability changes following prolonged muscle tendon vibration. Steyvers M; Levin O; Van Baelen M; Swinnen SP Neuroreport; 2003 Oct; 14(15):1901-5. PubMed ID: 14561917 [TBL] [Abstract][Full Text] [Related]
11. Spinal contribution to neuromuscular recovery differs between elbow-flexor and knee-extensor muscles after a maximal sustained fatiguing task. Vernillo G; Temesi J; Martin M; Krüger RL; Millet GY J Neurophysiol; 2020 Sep; 124(3):763-773. PubMed ID: 32755359 [TBL] [Abstract][Full Text] [Related]
12. Acute Strength Training Increases Responses to Stimulation of Corticospinal Axons. Nuzzo JL; Barry BK; Gandevia SC; Taylor JL Med Sci Sports Exerc; 2016 Jan; 48(1):139-50. PubMed ID: 26258855 [TBL] [Abstract][Full Text] [Related]
13. Sensory processing during kinesthetic aftereffect following illusory hand movement elicited by tendon vibration. Kito T; Hashimoto T; Yoneda T; Katamoto S; Naito E Brain Res; 2006 Oct; 1114(1):75-84. PubMed ID: 16920087 [TBL] [Abstract][Full Text] [Related]
14. Vibration decreases the responsiveness of Ia afferents and spinal motoneurons in humans. Nito M; Yoshimoto T; Hashizume W; Shindo M; Naito A J Neurophysiol; 2021 Oct; 126(4):1137-1147. PubMed ID: 34495775 [TBL] [Abstract][Full Text] [Related]