BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38198684)

  • 21. Ionomer structure and component transport in the cathode catalyst layer of PEM fuel cells: A molecular dynamics study.
    Huang Y; Theodorakis PE; Zeng Z; Wang T; Che Z
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38288759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High Power Density Platinum Group Metal-free Cathodes for Polymer Electrolyte Fuel Cells.
    Uddin A; Dunsmore L; Zhang H; Hu L; Wu G; Litster S
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2216-2224. PubMed ID: 31850728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of electrode ionomer oxygen permeability and ionomer-phase oxygen transport resistance in polymer electrolyte fuel cells.
    Sambandam S; Parrondo J; Ramani V
    Phys Chem Chem Phys; 2013 Sep; 15(36):14994-5002. PubMed ID: 23912796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells.
    Ott S; Orfanidi A; Schmies H; Anke B; Nong HN; Hübner J; Gernert U; Gliech M; Lerch M; Strasser P
    Nat Mater; 2020 Jan; 19(1):77-85. PubMed ID: 31570820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Innovative Insight into O
    You J; Cheng X; Li H; Yin J; Yan X; Wei G; Shen S; Zhang J
    J Phys Chem Lett; 2022 Dec; 13(49):11444-11453. PubMed ID: 36468972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designing fuel cell catalyst support for superior catalytic activity and low mass-transport resistance.
    Islam MN; Mansoor Basha AB; Kollath VO; Soleymani AP; Jankovic J; Karan K
    Nat Commun; 2022 Oct; 13(1):6157. PubMed ID: 36257992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of catalysts with fine platinum particles supported by high-surface-area activated carbons and optimization of their catalytic activities for polymer electrolyte fuel cells.
    Rahman MM; Inaba K; Batnyagt G; Saikawa M; Kato Y; Awata R; Delgertsetsega B; Kaneta Y; Higashi K; Uruga T; Iwasawa Y; Ui K; Takeguchi T
    RSC Adv; 2021 Jun; 11(33):20601-20611. PubMed ID: 35479922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Numerical Assessment of Mitigation Strategies to Reduce Local Oxygen and Proton Transport Resistances in Polymer Electrolyte Fuel Cells.
    García-Salaberri PA
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and Transport Properties of Hydrophilic and Hydrophobic Modified Ionomers in Proton Exchange Membrane Fuel Cells.
    Zhang Q; Wang C; Yu L; You J; Wei G; Zhang J
    Polymers (Basel); 2024 Feb; 16(5):. PubMed ID: 38475350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Molecular Model of PEMFC Catalyst Layer: Simulation on Reactant Transport and Thermal Conduction.
    Wang W; Qu Z; Wang X; Zhang J
    Membranes (Basel); 2021 Feb; 11(2):. PubMed ID: 33672648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing oxygen transport in the ionomer film on platinum catalyst using ionic liquid additives.
    Fan L; Wang Y; Jiao K
    Fundam Res; 2022 Mar; 2(2):230-236. PubMed ID: 38933169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Dispersion Solvents and Ionomers on the Rheology of Catalyst Inks and Catalyst Layer Structure for Proton Exchange Membrane Fuel Cells.
    Guo Y; Yang D; Li B; Yang D; Ming P; Zhang C
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27119-27128. PubMed ID: 34086430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of a new parameter representing the gas transport properties of the catalyst layers of polymer electrolyte fuel cells.
    Iden H; Ohma A; Tokunaga T; Yokoyama K; Shinohara K
    Phys Chem Chem Phys; 2016 May; 18(18):13066-73. PubMed ID: 27113681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Covalent organic framework-based porous ionomers for high-performance fuel cells.
    Zhang Q; Dong S; Shao P; Zhu Y; Mu Z; Sheng D; Zhang T; Jiang X; Shao R; Ren Z; Xie J; Feng X; Wang B
    Science; 2022 Oct; 378(6616):181-186. PubMed ID: 36228000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical Reduction of Dissolved Oxygen in Alkaline, Solid Polymer Electrolyte Films.
    Novitski D; Kosakian A; Weissbach T; Secanell M; Holdcroft S
    J Am Chem Soc; 2016 Nov; 138(47):15465-15472. PubMed ID: 27806202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina.
    Wang Y; Bryan C; Xu H; Pohl P; Yang Y; Brinker CJ
    J Colloid Interface Sci; 2002 Oct; 254(1):23-30. PubMed ID: 12702421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rational Design of Multimodal Porous Carbon for the Interfacial Microporous Layer of Fuel Cell Oxygen Electrodes.
    Nouri-Khorasani A; Bonakdarpour A; Fang B; Wilkinson DP
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9084-9096. PubMed ID: 35156371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microstructure-based modeling of aging mechanisms in catalyst layers of polymer electrolyte fuel cells.
    Malek K; Franco AA
    J Phys Chem B; 2011 Jun; 115(25):8088-101. PubMed ID: 21648461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A macroscopic model of proton transport through the membrane-ionomer interface of a polymer electrolyte membrane fuel cell.
    Kumar M; Edwards BJ; Paddison SJ
    J Chem Phys; 2013 Feb; 138(6):064903. PubMed ID: 23425489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and fuel cell performance of catalyst layers using sulfonated polyimide ionomers.
    Omata T; Tanaka M; Miyatake K; Uchida M; Uchida H; Watanabe M
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):730-7. PubMed ID: 22201410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.