These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38198915)

  • 1. A wing-assisted incline running exercise regime during rearing increases initial flight velocity during descent in adult white- and brown-feathered laying hens.
    Hong GAT; Tobalske BW; van Staaveren N; Leishman EM; Widowski T; Powers DR; Harlander-Matauschek A
    Poult Sci; 2024 Mar; 103(3):103375. PubMed ID: 38198915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of locomotion over inclined surfaces in laying hens.
    LeBlanc C; Tobalske B; Bowley S; Harlander-Matauschek A
    Animal; 2018 Mar; 12(3):585-596. PubMed ID: 28780926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerodynamics of wing-assisted incline running in birds.
    Tobalske BW; Dial KP
    J Exp Biol; 2007 May; 210(Pt 10):1742-51. PubMed ID: 17488937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wing-assisted incline running and the evolution of flight.
    Dial KP
    Science; 2003 Jan; 299(5605):402-4. PubMed ID: 12532020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domestic egg-laying hens,
    León BM; Tobalske BW; Sassi NB; Garant R; Powers DR; Harlander-Matauschek A
    R Soc Open Sci; 2021 Jul; 8(7):210196. PubMed ID: 34350016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The broad range of contractile behaviour of the avian pectoralis: functional and evolutionary implications.
    Jackson BE; Tobalske BW; Dial KP
    J Exp Biol; 2011 Jul; 214(Pt 14):2354-61. PubMed ID: 21697427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of clipping of flight feathers on resource use in Gallus gallus domesticus.
    Garant R; Tobalske BW; BenSassi N; van Staaveren N; Tulpan D; Widowski T; Powers DR; Harlander-Matauschek A
    R Soc Open Sci; 2022 Mar; 9(3):211561. PubMed ID: 35316951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional, high-resolution skeletal kinematics of the avian wing and shoulder during ascending flapping flight and uphill flap-running.
    Baier DB; Gatesy SM; Dial KP
    PLoS One; 2013; 8(5):e63982. PubMed ID: 23691132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wing-feather loss in white-feathered laying hens decreases pectoralis thickness but does not increase risk of keel bone fracture.
    Garant R; Tobalske BW; Sassi NB; van Staaveren N; Widowski T; Powers DR; Harlander-Matauschek A
    R Soc Open Sci; 2022 Jun; 9(6):220155. PubMed ID: 35719889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny of Flight Capacity and Pectoralis Function in a Precocial Ground Bird (Alectoris chukar).
    Tobalske BW; Jackson BE; Dial KP
    Integr Comp Biol; 2017 Aug; 57(2):217-230. PubMed ID: 28662566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics of wing-assisted incline running (WAIR).
    Bundle MW; Dial KP
    J Exp Biol; 2003 Dec; 206(Pt 24):4553-64. PubMed ID: 14610039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents.
    Dececchi TA; Larsson HC; Habib MB
    PeerJ; 2016; 4():e2159. PubMed ID: 27441115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precocial development of locomotor performance in a ground-dwelling bird (Alectoris chukar): negotiating a three-dimensional terrestrial environment.
    Jackson BE; Segre P; Dial KP
    Proc Biol Sci; 2009 Oct; 276(1672):3457-66. PubMed ID: 19570787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building a Bird: Musculoskeletal Modeling and Simulation of Wing-Assisted Incline Running During Avian Ontogeny.
    Heers AM; Rankin JW; Hutchinson JR
    Front Bioeng Biotechnol; 2018; 6():140. PubMed ID: 30406089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of wing area affects estimated stress in the primary flight muscles of chickens.
    Hong GAT; Tobalske BW; van Staaveren N; Leishman EM; Widowski TM; Powers DR; Harlander-Matauschek A
    R Soc Open Sci; 2023 Nov; 10(11):230817. PubMed ID: 38034124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogeny of aerial righting and wing flapping in juvenile birds.
    Evangelista D; Cam S; Huynh T; Krivitskiy I; Dudley R
    Biol Lett; 2014 Aug; 10(8):. PubMed ID: 25165451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does wing use and disuse cause behavioural and musculoskeletal changes in domestic fowl (
    Garant RC; Tobalske BW; Ben Sassi N; van Staaveren N; Tulpan D; Widowski T; Powers DR; Harlander-Matauschek A
    R Soc Open Sci; 2023 Jan; 10(1):220809. PubMed ID: 36704252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coracoid strength as an indicator of wing-beat propulsion in birds.
    Akeda T; Fujiwara SI
    J Anat; 2023 Mar; 242(3):436-446. PubMed ID: 36380603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds.
    Tobalske BW; Peacock WL; Dial KP
    J Exp Biol; 1999 Jul; 202 (Pt 13)():1725-39. PubMed ID: 10359676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.