BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38199068)

  • 1. Social network analysis of cell networks improves deep learning for prediction of molecular pathways and key mutations in colorectal cancer.
    Zamanitajeddin N; Jahanifar M; Bilal M; Eastwood M; Rajpoot N
    Med Image Anal; 2024 Apr; 93():103071. PubMed ID: 38199068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study.
    Bilal M; Raza SEA; Azam A; Graham S; Ilyas M; Cree IA; Snead D; Minhas F; Rajpoot NM
    Lancet Digit Health; 2021 Dec; 3(12):e763-e772. PubMed ID: 34686474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting microsatellite instability and key biomarkers in colorectal cancer from H&E-stained images: achieving state-of-the-art predictive performance with fewer data using Swin Transformer.
    Guo B; Li X; Yang M; Jonnagaddala J; Zhang H; Xu XS
    J Pathol Clin Res; 2023 May; 9(3):223-235. PubMed ID: 36723384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images.
    Lou J; Xu J; Zhang Y; Sun Y; Fang A; Liu J; Mur LAJ; Ji B
    Comput Methods Programs Biomed; 2022 Oct; 225():107095. PubMed ID: 36057226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations.
    Mouradov D; Domingo E; Gibbs P; Jorissen RN; Li S; Soo PY; Lipton L; Desai J; Danielsen HE; Oukrif D; Novelli M; Yau C; Holmes CC; Jones IT; McLaughlin S; Molloy P; Hawkins NJ; Ward R; Midgely R; Kerr D; Tomlinson IP; Sieber OM
    Am J Gastroenterol; 2013 Nov; 108(11):1785-93. PubMed ID: 24042191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study.
    Niehues JM; Quirke P; West NP; Grabsch HI; van Treeck M; Schirris Y; Veldhuizen GP; Hutchins GGA; Richman SD; Foersch S; Brinker TJ; Fukuoka J; Bychkov A; Uegami W; Truhn D; Brenner H; Brobeil A; Hoffmeister M; Kather JN
    Cell Rep Med; 2023 Apr; 4(4):100980. PubMed ID: 36958327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Chilean patients with sporadic colorectal cancer according to the three main carcinogenic pathways: Microsatellite instability, CpG island methylator phenotype and Chromosomal instability.
    Wielandt AM; Hurtado C; Moreno C M; Villarroel C; Castro M; Estay M; Simian D; Martinez M; Vial MT; Kronberg U; López-Köstner F
    Tumour Biol; 2020 Jul; 42(7):1010428320938492. PubMed ID: 32635826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of multivariate analysis to suggest a new molecular classification of colorectal cancer.
    Domingo E; Ramamoorthy R; Oukrif D; Rosmarin D; Presz M; Wang H; Pulker H; Lockstone H; Hveem T; Cranston T; Danielsen H; Novelli M; Davidson B; Xu ZZ; Molloy P; Johnstone E; Holmes C; Midgley R; Kerr D; Sieber O; Tomlinson I
    J Pathol; 2013 Feb; 229(3):441-8. PubMed ID: 23165447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associations between colorectal cancer molecular markers and pathways with clinicopathologic features in older women.
    Samadder NJ; Vierkant RA; Tillmans LS; Wang AH; Weisenberger DJ; Laird PW; Lynch CF; Anderson KE; French AJ; Haile RW; Potter JD; Slager SL; Smyrk TC; Thibodeau SN; Cerhan JR; Limburg PJ
    Gastroenterology; 2013 Aug; 145(2):348-56.e1-2. PubMed ID: 23665275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study.
    Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J
    Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer.
    Cao R; Yang F; Ma SC; Liu L; Zhao Y; Li Y; Wu DH; Wang T; Lu WJ; Cai WJ; Zhu HB; Guo XJ; Lu YW; Kuang JJ; Huan WJ; Tang WM; Huang K; Huang J; Yao J; Dong ZY
    Theranostics; 2020; 10(24):11080-11091. PubMed ID: 33042271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association between molecular subtypes of colorectal cancer and patient survival.
    Phipps AI; Limburg PJ; Baron JA; Burnett-Hartman AN; Weisenberger DJ; Laird PW; Sinicrope FA; Rosty C; Buchanan DD; Potter JD; Newcomb PA
    Gastroenterology; 2015 Jan; 148(1):77-87.e2. PubMed ID: 25280443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MLH1-silenced and non-silenced subgroups of hypermutated colorectal carcinomas have distinct mutational landscapes.
    Donehower LA; Creighton CJ; Schultz N; Shinbrot E; Chang K; Gunaratne PH; Muzny D; Sander C; Hamilton SR; Gibbs RA; Wheeler D
    J Pathol; 2013 Jan; 229(1):99-110. PubMed ID: 22899370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular subtypes of colorectal cancers determined by PCR-based analysis.
    Sugai T; Eizuka M; Takahashi Y; Fukagawa T; Habano W; Yamamoto E; Akasaka R; Otuska K; Matsumoto T; Suzuki H
    Cancer Sci; 2017 Mar; 108(3):427-434. PubMed ID: 28083970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Down-regulation of p21 (CDKN1A/CIP1) is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer.
    Ogino S; Kawasaki T; Kirkner GJ; Ogawa A; Dorfman I; Loda M; Fuchs CS
    J Pathol; 2006 Oct; 210(2):147-54. PubMed ID: 16850502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MSI status is associated with distinct clinicopathological features in BRAF mutation colorectal cancer: A systematic review and meta-analysis.
    Wu M; Kim YS; Ryu HS; Choi SC; Kim KY; Park WC; Kim MS; Myung JY; Choi HS; Kim EJ; Lee MY
    Pathol Res Pract; 2020 Jan; 216(1):152791. PubMed ID: 31866097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: primary or secondary genetic events in colorectal carcinogenesis?
    Velho S; Moutinho C; Cirnes L; Albuquerque C; Hamelin R; Schmitt F; Carneiro F; Oliveira C; Seruca R
    BMC Cancer; 2008 Sep; 8():255. PubMed ID: 18782444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Analysis of the Relationship Between RAS and RAF Mutations and MSI Status of Colorectal Cancer in Northeastern China.
    Li W; Li H; Liu R; Yang X; Gao Y; Niu Y; Geng J; Xue Y; Jin X; You Q; Geng J; Meng H
    Cell Physiol Biochem; 2018; 50(4):1496-1509. PubMed ID: 30359964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High concordance rate of KRAS/BRAF mutations and MSI-H between primary colorectal cancer and corresponding metastases.
    Fujiyoshi K; Yamamoto G; Takahashi A; Arai Y; Yamada M; Kakuta M; Yamaguchi K; Akagi Y; Nishimura Y; Sakamoto H; Akagi K
    Oncol Rep; 2017 Feb; 37(2):785-792. PubMed ID: 28000889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct BRAF (V600E) and KRAS mutations in high microsatellite instability sporadic colorectal cancer in African Americans.
    Kumar K; Brim H; Giardiello F; Smoot DT; Nouraie M; Lee EL; Ashktorab H
    Clin Cancer Res; 2009 Feb; 15(4):1155-61. PubMed ID: 19190129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.