BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38199181)

  • 1. A unified account of simple and response-selective inhibition.
    Gronau QF; Hinder MR; Salomoni SE; Matzke D; Heathcote A
    Cogn Psychol; 2024 Mar; 149():101628. PubMed ID: 38199181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proactive cues facilitate faster action reprogramming, but not stopping, in a response-selective stop signal task.
    Salomoni SE; Gronau QF; Heathcote A; Matzke D; Hinder MR
    Sci Rep; 2023 Nov; 13(1):19564. PubMed ID: 37949974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stopping Speed in Response to Auditory and Visual Stop Signals Depends on Go Signal Modality.
    Weber S; Salomoni SE; St George RJ; Hinder MR
    J Cogn Neurosci; 2024 Jun; 36(7):1395-1411. PubMed ID: 38683725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.
    Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O
    J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective cancellation of reactive or anticipated movements: Differences in speed of action reprogramming, but not stopping.
    Weber S; Salomoni SE; Hinder MR
    Cortex; 2024 Jun; 177():235-252. PubMed ID: 38875737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing anticipatory and stop-signal response inhibition with a novel, open-source selective stopping toolbox.
    Wadsley CG; Cirillo J; Nieuwenhuys A; Byblow WD
    Exp Brain Res; 2023 Feb; 241(2):601-613. PubMed ID: 36635589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociating attentional capture from action cancellation during the inhibition of bimanual movement.
    Weber S; Salomoni SE; Kilpatrick C; Hinder MR
    Psychophysiology; 2023 Nov; 60(11):e14372. PubMed ID: 37366262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early Rise and Persistent Inhibition of Electromyography during Failed Stopping.
    Fisher M; Trinh H; O'Neill J; Greenhouse I
    J Cogn Neurosci; 2024 Jun; 36(7):1412-1426. PubMed ID: 38683729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoupling countermands nonselective response inhibition during selective stopping.
    Wadsley CG; Cirillo J; Nieuwenhuys A; Byblow WD
    J Neurophysiol; 2022 Jan; 127(1):188-203. PubMed ID: 34936517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active Braking of Whole-Arm Reaching Movements Provides Single-Trial Neuromuscular Measures of Movement Cancellation.
    Atsma J; Maij F; Gu C; Medendorp WP; Corneil BD
    J Neurosci; 2018 May; 38(18):4367-4382. PubMed ID: 29636393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voluntarily-generated unimanual preparation is associated with stopping success: evidence from LRP and lateralized mu ERD before the stop signal.
    Ko YT; Cheng SK; Juan CH
    Psychol Res; 2015 Mar; 79(2):249-58. PubMed ID: 24718558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A supramodal role of the basal ganglia in memory and motor inhibition: Meta-analytic evidence.
    Guo Y; Schmitz TW; Mur M; Ferreira CS; Anderson MC
    Neuropsychologia; 2018 Jan; 108():117-134. PubMed ID: 29199109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms.
    Raud L; Westerhausen R; Dooley N; Huster RJ
    Neuroimage; 2020 Apr; 210():116582. PubMed ID: 31987997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common and Unique Inhibitory Control Signatures of Action-Stopping and Attentional Capture Suggest That Actions Are Stopped in Two Stages.
    Tatz JR; Soh C; Wessel JR
    J Neurosci; 2021 Oct; 41(42):8826-8838. PubMed ID: 34493541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paradox resolved: Stop signal race model with negative dependence.
    Colonius H; Diederich A
    Psychol Rev; 2018 Nov; 125(6):1051-1058. PubMed ID: 30272461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating a race model account of executive control in rats with the countermanding paradigm.
    Beuk J; Beninger RJ; Paré M
    Neuroscience; 2014 Mar; 263():96-110. PubMed ID: 24440749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Single Mechanism for Global and Selective Response Inhibition under the Influence of Motor Preparation.
    Raud L; Huster RJ; Ivry RB; Labruna L; Messel MS; Greenhouse I
    J Neurosci; 2020 Oct; 40(41):7921-7935. PubMed ID: 32928884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of interhemispheric communication during complete and partial cancellation of bimanual responses.
    MacDonald HJ; Laksanaphuk C; Day A; Byblow WD; Jenkinson N
    J Neurophysiol; 2021 Mar; 125(3):875-886. PubMed ID: 33567982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the role of contextual cues and interhemispheric inhibitory mechanisms in response-selective stopping: a TMS study.
    Puri R; St George RJ; Hinder MR
    Cogn Affect Behav Neurosci; 2023 Feb; 23(1):84-99. PubMed ID: 36385251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory motor control based on complex stopping goals relies on the same brain network as simple stopping.
    Wessel JR; Aron AR
    Neuroimage; 2014 Dec; 103():225-234. PubMed ID: 25270603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.