These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 38199289)

  • 21. Impact of oxidative stress on exercising skeletal muscle.
    Steinbacher P; Eckl P
    Biomolecules; 2015 Apr; 5(2):356-77. PubMed ID: 25866921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake.
    Shill DD; Southern WM; Willingham TB; Lansford KA; McCully KK; Jenkins NT
    J Physiol; 2016 Dec; 594(23):7005-7014. PubMed ID: 27501153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systemic adaptation to oxidative challenge induced by regular exercise.
    Radak Z; Chung HY; Goto S
    Free Radic Biol Med; 2008 Jan; 44(2):153-9. PubMed ID: 18191751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: implications of antioxidant supplementation on physiological adaptation during intensified physical training.
    Slattery K; Bentley D; Coutts AJ
    Sports Med; 2015 Apr; 45(4):453-71. PubMed ID: 25398224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Physical exercise, oxidative stress and damage].
    Apor P; Rádi A
    Orv Hetil; 2006 Jun; 147(22):1025-31. PubMed ID: 16913092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle redox signalling pathways in exercise. Role of antioxidants.
    Mason SA; Morrison D; McConell GK; Wadley GD
    Free Radic Biol Med; 2016 Sep; 98():29-45. PubMed ID: 26912034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling.
    Radak Z; Zhao Z; Koltai E; Ohno H; Atalay M
    Antioxid Redox Signal; 2013 Apr; 18(10):1208-46. PubMed ID: 22978553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exercise at old age: does it increase or alleviate oxidative stress?
    Ji LL
    Ann N Y Acad Sci; 2001 Apr; 928():236-47. PubMed ID: 11795515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of mitochondria in redox signaling of muscle homeostasis.
    Ji LL; Yeo D; Kang C; Zhang T
    J Sport Health Sci; 2020 Sep; 9(5):386-393. PubMed ID: 32780692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exercise, oxidative stress and hormesis.
    Radak Z; Chung HY; Koltai E; Taylor AW; Goto S
    Ageing Res Rev; 2008 Jan; 7(1):34-42. PubMed ID: 17869589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-kappaB activation.
    Bar-Shai M; Carmeli E; Ljubuncic P; Reznick AZ
    Free Radic Biol Med; 2008 Jan; 44(2):202-14. PubMed ID: 18191756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of Exercise and Aging on Mitochondrial Homeostasis in Skeletal Muscle: Roles of ROS and Epigenetics.
    Li J; Wang Z; Li C; Song Y; Wang Y; Bo H; Zhang Y
    Cells; 2022 Jun; 11(13):. PubMed ID: 35805170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans.
    Morrison D; Hughes J; Della Gatta PA; Mason S; Lamon S; Russell AP; Wadley GD
    Free Radic Biol Med; 2015 Dec; 89():852-62. PubMed ID: 26482865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox signaling in skeletal muscle: role of aging and exercise.
    Ji LL
    Adv Physiol Educ; 2015 Dec; 39(4):352-9. PubMed ID: 26628659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aging is not a barrier to muscle and redox adaptations: applying the repeated eccentric exercise model.
    Nikolaidis MG; Kyparos A; Spanou C; Paschalis V; Theodorou AA; Panayiotou G; Grivas GV; Zafeiridis A; Dipla K; Vrabas IS
    Exp Gerontol; 2013 Aug; 48(8):734-43. PubMed ID: 23628501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exercise-induced modulation of antioxidant defense.
    Ji LL
    Ann N Y Acad Sci; 2002 Apr; 959():82-92. PubMed ID: 11976188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Interplay Between Exercise Metabolism, Epigenetics, and Skeletal Muscle Remodeling.
    Seaborne RA; Sharples AP
    Exerc Sport Sci Rev; 2020 Oct; 48(4):188-200. PubMed ID: 32658040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting redox interindividual variability.
    Margaritelis NV; Theodorou AA; Paschalis V; Veskoukis AS; Dipla K; Zafeiridis A; Panayiotou G; Vrabas IS; Kyparos A; Nikolaidis MG
    Acta Physiol (Oxf); 2018 Feb; 222(2):. PubMed ID: 28544643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acute paraquat exposure determines dose-dependent oxidative injury of multiple organs and metabolic dysfunction in rats: impact on exercise tolerance.
    Novaes RD; Gonçalves RV; Cupertino MC; Santos EC; Bigonha SM; Fernandes GJ; Maldonado IR; Natali AJ
    Int J Exp Pathol; 2016 Apr; 97(2):114-24. PubMed ID: 27277193
    [TBL] [Abstract][Full Text] [Related]  

  • 40. No effect of antioxidant supplementation on muscle performance and blood redox status adaptations to eccentric training.
    Theodorou AA; Nikolaidis MG; Paschalis V; Koutsias S; Panayiotou G; Fatouros IG; Koutedakis Y; Jamurtas AZ
    Am J Clin Nutr; 2011 Jun; 93(6):1373-83. PubMed ID: 21508092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.