BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38199305)

  • 21. Evaluation of lignocellulosic wastes for production of edible mushrooms.
    Rani P; Kalyani N; Prathiba K
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):151-9. PubMed ID: 18327544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide analysis of the Pleurotus eryngii laccase gene (PeLac) family and functional identification of PeLac5.
    Li Z; Zhou Y; Xu C; Pan J; Li H; Zhou Y; Zou Y
    AMB Express; 2023 Sep; 13(1):104. PubMed ID: 37768391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative transcriptomics of Pleurotus eryngii reveals blue-light regulation of carbohydrate-active enzymes (CAZymes) expression at primordium differentiated into fruiting body stage.
    Xie C; Gong W; Zhu Z; Yan L; Hu Z; Peng Y
    Genomics; 2018 May; 110(3):201-209. PubMed ID: 28970048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lignocellulolytic enzyme profiles of edible mushroom fungi.
    Buswell JA; Cai YJ; Chang ST; Peberdy JF; Fu SY; Yu HS
    World J Microbiol Biotechnol; 1996 Sep; 12(5):537-42. PubMed ID: 24415386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of ligninolytic enzymes by solid-state fermentation using Pleurotus eryngii.
    Akpinar M; Urek RO
    Prep Biochem Biotechnol; 2012; 42(6):582-97. PubMed ID: 23030469
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Scott CJR; McGregor NGS; Leadbeater DR; Oates NC; Hoßbach J; Abood A; Setchfield A; Dowle A; Overkleeft HS; Davies GJ; Bruce NC
    Microbiol Spectr; 2024 May; ():e0394323. PubMed ID: 38757984
    [No Abstract]   [Full Text] [Related]  

  • 27. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes.
    da Luz JM; Nunes MD; Paes SA; Torres DP; de Cássia Soares da Silva M; Kasuya MC
    Braz J Microbiol; 2012 Oct; 43(4):1508-15. PubMed ID: 24031982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of green light to improve the production of lignocellulose-decay enzymes by Pleurotus spp. in liquid cultivation.
    Araújo NL; Avelino KV; Halabura MIW; Marim RA; Kassem ASS; Linde GA; Colauto NB; do Valle JS
    Enzyme Microb Technol; 2021 Sep; 149():109860. PubMed ID: 34311876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cultivation of Different Oyster Mushroom (
    Dissasa G
    Int J Microbiol; 2022; 2022():5219939. PubMed ID: 35571352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decolorization and degradation potential of enhanced lignocellulolytic enzymes production by Pleurotus eryngii using cherry waste from industry.
    Akpinar M; Ozturk Urek R
    Biotechnol Appl Biochem; 2020 Sep; 67(5):760-773. PubMed ID: 31677305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Lytic Polysaccharide Monooxygenase from a White-Rot Fungus Drives the Degradation of Lignin by a Versatile Peroxidase.
    Li F; Ma F; Zhao H; Zhang S; Wang L; Zhang X; Yu H
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligno(hemi)cellulolytic Enzyme Profiles during the Developmental Cycle of the Royal Oyster Medicinal Mushroom Pleurotus eryngii (Agaricomycetes) Grown on Supplemented Agri-Wastes.
    Ni TT; Zhao X; Xing Z; Tan Q; Buswell JA
    Int J Med Mushrooms; 2020; 22(9):919-929. PubMed ID: 33389857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates.
    Zervakis G; Philippoussis A; Ioannidou S; Diamantopoulou P
    Folia Microbiol (Praha); 2001; 46(3):231-4. PubMed ID: 11702409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH.
    Fernández-Fueyo E; Castanera R; Ruiz-Dueñas FJ; López-Lucendo MF; Ramírez L; Pisabarro AG; Martínez AT
    Fungal Genet Biol; 2014 Nov; 72():150-161. PubMed ID: 24560615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial degradation and transformation of benzo[a]pyrene by using a white-rot fungus Pleurotus eryngii F032.
    Hadibarata T; Kristanti RA; Bilal M; Al-Mohaimeed AM; Chen TW; Lam MK
    Chemosphere; 2022 Nov; 307(Pt 3):136014. PubMed ID: 35970216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of spent mushroom substrate on the dissipation of polycyclic aromatic hydrocarbons in agricultural soil.
    Zhou J; Ge W; Zhang X; Wu J; Chen Q; Ma D; Chai C
    Chemosphere; 2020 Nov; 259():127462. PubMed ID: 32590177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential Proteomic Profiles of
    Xiao Q; Ma F; Li Y; Yu H; Li C; Zhang X
    Front Microbiol; 2017; 8():480. PubMed ID: 28386251
    [No Abstract]   [Full Text] [Related]  

  • 38. Environmental implications of the organic matter structure for white-rot fungus Pleurotus eryngii growth in a tropical climate.
    Louzada Dos Santos T; Huertas Tavares OC; de Abreu Lopes S; Elias SS; Louro Berbara RL; García AC
    Fungal Biol; 2021 Nov; 125(11):845-859. PubMed ID: 34649671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding gene (mnp2) results in reduced lignin degradation.
    Salame TM; Knop D; Levinson D; Mabjeesh SJ; Yarden O; Hadar Y
    Environ Microbiol; 2014 Jan; 16(1):265-77. PubMed ID: 24119015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradation of sugarcane bagasse by Pleurotus citrinopileatus.
    Pandey VK; Singh MP; Srivastava AK; Vishwakarma SK; Takshak S
    Cell Mol Biol (Noisy-le-grand); 2012 Dec; 58(1):8-14. PubMed ID: 23273185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.