These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38199378)
1. Phytoremediation and environmental effects of three Amaranthaceae plants in contaminated soil under intercropping systems. Huang R; Xing C; Yang Y; Yu W; Zeng L; Li Y; Tan Z; Li Z Sci Total Environ; 2024 Mar; 914():169900. PubMed ID: 38199378 [TBL] [Abstract][Full Text] [Related]
2. Effects of different planting distances and fertilizer use on the remediation of farmland contaminated with Cd by intercropping Cucurbita moschata and Amaranthus hypochondriacus L. Chen W; Zhou M; Yang Y; Meng D; Ying J; Li Y; Kang Z; Li H Environ Sci Pollut Res Int; 2023 Apr; 30(18):53037-53049. PubMed ID: 36854940 [TBL] [Abstract][Full Text] [Related]
3. Phytoextraction of cadmium-contaminated soils: comparison of plant species and low molecular weight organic acids. Yu G; Liu J; Long Y; Chen Z; Sunahara GI; Jiang P; You S; Lin H; Xiao H Int J Phytoremediation; 2020; 22(4):383-391. PubMed ID: 31522543 [TBL] [Abstract][Full Text] [Related]
4. [Plant growth and Cd accumulation characteristics in different planting modes of maize and Amaranthus hypochondriacus.]. Guo N; Chi GY; Shi Y; Chen X Ying Yong Sheng Tai Xue Bao; 2019 Sep; 30(9):3164-3174. PubMed ID: 31529892 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils. Huang R; Dong M; Mao P; Zhuang P; Paz-Ferreiro J; Li Y; Li Y; Hu X; Netherway P; Li Z Sci Total Environ; 2020 Jun; 721():137581. PubMed ID: 32163732 [TBL] [Abstract][Full Text] [Related]
6. Phytoremediation of cadmium contaminated soils by Amaranthus Hypochondriacus L.: The effects of soil properties highlighting cation exchange capacity. Cui X; Mao P; Sun S; Huang R; Fan Y; Li Y; Li Y; Zhuang P; Li Z Chemosphere; 2021 Nov; 283():131067. PubMed ID: 34144285 [TBL] [Abstract][Full Text] [Related]
7. Phytoextraction of cadmium-contaminated soil by Celosia argentea Linn.: A long-term field study. Yu G; Jiang P; Fu X; Liu J; Sunahara GI; Chen Z; Xiao H; Lin F; Wang X Environ Pollut; 2020 Nov; 266(Pt 1):115408. PubMed ID: 32829173 [TBL] [Abstract][Full Text] [Related]
8. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Wang K; Liu Y; Song Z; Wang D; Qiu W Chemosphere; 2019 Dec; 237():124480. PubMed ID: 31394449 [TBL] [Abstract][Full Text] [Related]
9. [Potential of Intercropping Wang XH; Xiao XY; Guo ZH; Peng C; Wang XY Huan Jing Ke Xue; 2023 Jan; 44(1):426-435. PubMed ID: 36635830 [TBL] [Abstract][Full Text] [Related]
10. Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation. Bian F; Zhong Z; Li C; Zhang X; Gu L; Huang Z; Gai X; Huang Z J Hazard Mater; 2021 Aug; 416():125898. PubMed ID: 34492836 [TBL] [Abstract][Full Text] [Related]
11. Decapitation improves the efficiency of Cd phytoextraction by Celosia argentea Linn. Liu J; Zhang X; Mo L; Yao S; Wang Y Chemosphere; 2017 Aug; 181():382-389. PubMed ID: 28458213 [TBL] [Abstract][Full Text] [Related]
12. Effect of hesperidin on growth, photosynthesis, antioxidant systems and uptake of cadmium, copper, chromium and zinc by Celosia argentea plants. Hussain M; Hafeez A; Al-Huqail AA; Alsudays IM; Alghanem SMS; Ashraf MA; Rasheed R; Rizwan M; Abeed AHA Plant Physiol Biochem; 2024 Feb; 207():108433. PubMed ID: 38364631 [TBL] [Abstract][Full Text] [Related]
13. 24-Epibrassinolide combined with heavy metal resistant bacteria enhancing phytoextraction of Amaranthus hypochondriacus L. in Cd-contaminated soil. Xie Y; Luo Y; Sheng M; Peng H; Gu Y; Xu H; Zhao Y J Hazard Mater; 2020 Nov; 399():123031. PubMed ID: 32516649 [TBL] [Abstract][Full Text] [Related]
14. The cadmium decontamination and disposal of the harvested cadmium accumulator Amaranthus hypochondriacus L. Lei L; Cui X; Li C; Dong M; Huang R; Li Y; Li Y; Li Z; Wu J Chemosphere; 2022 Jan; 286(Pt 1):131684. PubMed ID: 34346323 [TBL] [Abstract][Full Text] [Related]
15. Phytoextraction of 55-year-old wastewater-irrigated soil in a Zn-Pb mine district: effect of plant species and chelators. Tai Y; Yang Y; Li Z; Yang Y; Wang J; Zhuang P; Zou B Environ Technol; 2018 Aug; 39(16):2138-2150. PubMed ID: 28678620 [TBL] [Abstract][Full Text] [Related]
16. Positive effects of applying endophytic bacteria in eggplant-Sedum intercropping system on Cd phytoremediation and vegetable production in cadmium polluted greenhouse. Ma L; Huang L; Liu Q; Xu S; Wen Z; Qin S; Li T; Feng Y J Environ Sci (China); 2022 May; 115():383-391. PubMed ID: 34969466 [TBL] [Abstract][Full Text] [Related]
17. Intercropping Sedum alfredii Hance and Cicer arietinum L. does not present a suitable land use pattern for multi-metal-polluted soil. He H; Jia Y; Li R; Yang P; Cao M; Luo J Environ Sci Pollut Res Int; 2023 Aug; 30(38):89616-89626. PubMed ID: 37454382 [TBL] [Abstract][Full Text] [Related]
18. Rotation of Celosia argentea and Sedum plumbizincicola promotes Cd phytoextraction efficiency. Liu J; Jiang X; Zhang X; Jiang P; Yu G J Hazard Mater; 2024 Jul; 472():134551. PubMed ID: 38743979 [TBL] [Abstract][Full Text] [Related]
19. Interspecific root interaction enhances cadmium accumulation in Oryza sativa when intercropping with cadmium accumulator Artemisia argyi. Chen XS; Zhang Z; Song XR; Deng ZM; Xu C; Huang DY; Qin XY Ecotoxicol Environ Saf; 2024 Jan; 269():115788. PubMed ID: 38056118 [TBL] [Abstract][Full Text] [Related]
20. The Cd phytoextraction potential of hyperaccumulator Sedum alfredii-oilseed rape intercropping system under different soil types and comprehensive benefits evaluation under field conditions. Cao X; Wang X; Lu M; Hamid Y; Lin Q; Liu X; Li T; Liu G; He Z; Yang X Environ Pollut; 2021 Sep; 285():117504. PubMed ID: 34380216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]