These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 38199549)

  • 1. Self-assembly and hydrogelation of a potential bioactive peptide derived from quinoa proteins.
    Cheng L; De Leon-Rodriguez LM; Gilbert EP; Loo T; Petters L; Yang Z
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129296. PubMed ID: 38199549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide.
    Haines LA; Rajagopal K; Ozbas B; Salick DA; Pochan DJ; Schneider JP
    J Am Chem Soc; 2005 Dec; 127(48):17025-9. PubMed ID: 16316249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation.
    Rajagopal K; Lamm MS; Haines-Butterick LA; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 Sep; 10(9):2619-25. PubMed ID: 19663418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers.
    Rexeisen EL; Fan W; Pangburn TO; Taribagil RR; Bates FS; Lodge TP; Tsapatsis M; Kokkoli E
    Langmuir; 2010 Feb; 26(3):1953-9. PubMed ID: 19877715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide.
    Schneider JP; Pochan DJ; Ozbas B; Rajagopal K; Pakstis L; Kretsinger J
    J Am Chem Soc; 2002 Dec; 124(50):15030-7. PubMed ID: 12475347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators.
    Rajagopal K; Ozbas B; Pochan DJ; Schneider JP
    Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo design of strand-swapped beta-hairpin hydrogels.
    Nagarkar RP; Hule RA; Pochan DJ; Schneider JP
    J Am Chem Soc; 2008 Apr; 130(13):4466-74. PubMed ID: 18335936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Lipidation on the Self-Assembly of the Gut-Derived Peptide Hormone PYY
    Hutchinson JA; Burholt S; Hamley IW; Lundback AK; Uddin S; Gomes Dos Santos A; Reza M; Seitsonen J; Ruokolainen J
    Bioconjug Chem; 2018 Jul; 29(7):2296-2308. PubMed ID: 29856926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reductive trigger for peptide self-assembly and hydrogelation.
    Bowerman CJ; Nilsson BL
    J Am Chem Soc; 2010 Jul; 132(28):9526-7. PubMed ID: 20405940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning gelation kinetics and mechanical rigidity of β-hairpin peptide hydrogels via hydrophobic amino acid substitutions.
    Chen C; Gu Y; Deng L; Han S; Sun X; Chen Y; Lu JR; Xu H
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14360-8. PubMed ID: 25087842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Hydrophobic Face Amino Acids on the Hydrogelation of
    Micklitsch CM; Medina SH; Yucel T; Nagy-Smith KJ; Pochan DJ; Schneider JP
    Macromolecules; 2015 Mar; 48(5):1281-1288. PubMed ID: 33223568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling network topology and mechanical properties of co-assembling peptide hydrogels.
    Boothroyd S; Saiani A; Miller AF
    Biopolymers; 2014 Jun; 101(6):669-80. PubMed ID: 26819975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards food-derived self-assembling peptide-based hydrogels: Insights into preparation, characterization and mechanism.
    Zhu C; Wu W; Soladoye OP; Zhang N; Zhang Y; Fu Y
    Food Chem; 2024 Nov; 459():140397. PubMed ID: 39018622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and stability of nanofibers from a milk-derived peptide.
    Guy MM; Tremblay M; Voyer N; Gauthier SF; Pouliot Y
    J Agric Food Chem; 2011 Jan; 59(2):720-6. PubMed ID: 21182295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimuli responsive fibrous hydrogels from hierarchical self-assembly of a triblock copolypeptide.
    Popescu MT; Liontos G; Avgeropoulos A; Tsitsilianis C
    Soft Matter; 2015 Jan; 11(2):331-42. PubMed ID: 25379651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.