These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38200016)

  • 1. Hydrogen evolution with hot electrons on a plasmonic-molecular catalyst hybrid system.
    Dey A; Mendalz A; Wach A; Vadell RB; Silveira VR; Leidinger PM; Huthwelker T; Shtender V; Novotny Z; Artiglia L; Sá J
    Nat Commun; 2024 Jan; 15(1):445. PubMed ID: 38200016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting hot electrons from a plasmon nanohybrid system for the photoelectroreduction of CO
    Dey A; Silveira VR; Vadell RB; Lindblad A; Lindblad R; Shtender V; Görlin M; Sá J
    Commun Chem; 2024 Mar; 7(1):59. PubMed ID: 38509134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation.
    Zhang C; Kong T; Fu Z; Zhang Z; Zheng H
    Nanoscale; 2020 Apr; 12(16):8768-8774. PubMed ID: 32101225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic Boosting by Surface-Plasmon-Driven Hot Electrons on Antenna-Reactor Schottky Nanodiodes.
    Kang M; Jeon B; Park JY
    Nano Lett; 2023 Jun; 23(11):5116-5122. PubMed ID: 37265068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-promoted electrocatalytic water splitting on metal-semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites.
    Du L; Shi G; Zhao Y; Chen X; Sun H; Liu F; Cheng F; Xie W
    Chem Sci; 2019 Nov; 10(41):9605-9612. PubMed ID: 32055334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen evolution from water based on plasmon-induced charge separation at a TiO
    Kao KC; Kuroiwa Y; Nishi H; Tatsuma T
    Phys Chem Chem Phys; 2017 Nov; 19(46):31429-31435. PubMed ID: 29159348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elongated Lifetime and Enhanced Flux of Hot Electrons on a Perovskite Plasmonic Nanodiode.
    Park Y; Choi J; Lee C; Cho AN; Cho DW; Park NG; Ihee H; Park JY
    Nano Lett; 2019 Aug; 19(8):5489-5495. PubMed ID: 31348860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Plasmonic Hot Electron Energy on Ag Surface by Amine Coordination.
    Wang Y; Li Y; Yang X; Wang T; Du X; Zhu A; Xie W; Xie W
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318817. PubMed ID: 38224169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Separation of Plasmonic Hot-Electron Generation and a Hydrodehalogenation Reaction Center Using a DNA Wire.
    Kogikoski S; Dutta A; Bald I
    ACS Nano; 2021 Dec; 15(12):20562-20573. PubMed ID: 34875168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon-Assisted Hot Carrier Generation in Plasmonic Semiconductor Systems.
    Hattori Y; Meng J; Zheng K; Meier de Andrade A; Kullgren J; Broqvist P; Nordlander P; Sá J
    Nano Lett; 2021 Jan; 21(2):1083-1089. PubMed ID: 33416331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy and Momentum Distribution of Surface Plasmon-Induced Hot Carriers Isolated
    Hartelt M; Terekhin PN; Eul T; Mahro AK; Frisch B; Prinz E; Rethfeld B; Stadtmüller B; Aeschlimann M
    ACS Nano; 2021 Dec; 15(12):19559-19569. PubMed ID: 34852458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting Hydrogen Evolution at Visible Light Wavelengths by Using a Photocathode with Modal Strong Coupling between Plasmons and a Fabry-Pérot Nanocavity.
    Oshikiri T; Jo H; Shi X; Misawa H
    Chemistry; 2022 Apr; 28(24):e202200288. PubMed ID: 35187736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoupling Plasmonic Hot Carrier from Thermal Catalysis via Electrode Engineering.
    Sekar P; Bericat-Vadell R; Patehebieke Y; Broqvist P; Wallentin CJ; Görlin M; Sá J
    Nano Lett; 2024 Jul; 24(28):8619-8625. PubMed ID: 38973705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Deposition of Catalytic Metals on Plasmonic Au Nanocups for Room-Light-Active Photooxidation of
    Zhang H; Lam SH; Guo Y; Yang J; Lu Y; Shao L; Yang B; Xiao L; Wang J
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):51855-51866. PubMed ID: 33908755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic hot electron transfer in anisotropic Pt-Au nanodisks boosts electrochemical reactions in the visible-NIR region.
    Chen G; Sun M; Li J; Zhu M; Lou Z; Li B
    Nanoscale; 2019 Oct; 11(40):18874-18880. PubMed ID: 31596285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu
    Lee SW; Hong JW; Lee H; Wi DH; Kim SM; Han SW; Park JY
    Nanoscale; 2018 Jun; 10(23):10835-10843. PubMed ID: 29694476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.