These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 38200040)
1. Multifunctional metallic nanocomposite for overcoming the strength-ductility trade-off. Lanba AR; Hamilton RF; Melanson AN; Perry ES; Gordon RF Sci Rep; 2024 Jan; 14(1):1046. PubMed ID: 38200040 [TBL] [Abstract][Full Text] [Related]
2. Strength-Ductility Synergy in High Entropy Alloys by Tuning the Thermo-Mechanical Process Parameters: A Comprehensive Review. Sabban R; Dash K; Suwas S; Murty BS J Indian Inst Sci; 2022; 102(1):91-116. PubMed ID: 35345876 [TBL] [Abstract][Full Text] [Related]
3. Overcoming strength-ductility tradeoff with high pressure thermal treatment. Tang Y; Wang H; Ouyang X; Wang C; Huang Q; Zhao Q; Liu X; Zhu Q; Hou Z; Wu J; Zhang Z; Li H; Yang Y; Yang W; Gao H; Zhou H Nat Commun; 2024 May; 15(1):3932. PubMed ID: 38729936 [TBL] [Abstract][Full Text] [Related]
4. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Li Z; Pradeep KG; Deng Y; Raabe D; Tasan CC Nature; 2016 Jun; 534(7606):227-30. PubMed ID: 27279217 [TBL] [Abstract][Full Text] [Related]
5. A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range. Nutor RK; Cao Q; Wei R; Su Q; Du G; Wang X; Li F; Zhang D; Jiang JZ Sci Adv; 2021 Aug; 7(34):. PubMed ID: 34417183 [TBL] [Abstract][Full Text] [Related]
6. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Lei Z; Liu X; Wu Y; Wang H; Jiang S; Wang S; Hui X; Wu Y; Gault B; Kontis P; Raabe D; Gu L; Zhang Q; Chen H; Wang H; Liu J; An K; Zeng Q; Nieh TG; Lu Z Nature; 2018 Nov; 563(7732):546-550. PubMed ID: 30429610 [TBL] [Abstract][Full Text] [Related]
7. Effect of Alloying Elements on the Compressive Mechanical Properties of Biomedical Titanium Alloys: A Systematic Review. Jawed SF; Rabadia CD; Khan MA; Khan SJ ACS Omega; 2022 Aug; 7(34):29526-29542. PubMed ID: 36061649 [TBL] [Abstract][Full Text] [Related]
8. Tuning Microstructure and Mechanical Performance of a Co-Rich Transformation-Induced Plasticity High Entropy Alloy. Yi H; Xie R; Zhang Y; Wang L; Tan M; Li T; Wei D Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806733 [TBL] [Abstract][Full Text] [Related]
9. Crystal-Glass High-Entropy Nanocomposites with Near Theoretical Compressive Strength and Large Deformability. Wu G; Balachandran S; Gault B; Xia W; Liu C; Rao Z; Wei Y; Liu S; Lu J; Herbig M; Lu W; Dehm G; Li Z; Raabe D Adv Mater; 2020 Aug; 32(34):e2002619. PubMed ID: 32686224 [TBL] [Abstract][Full Text] [Related]
10. Microstructure and Mechanical Properties of NiTi-Based Eutectic Shape Memory Alloy Produced via Selective Laser Melting In-Situ Alloying by Nb. Polozov I; Popovich A Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065582 [TBL] [Abstract][Full Text] [Related]
11. Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering. Huang H; Wu Y; He J; Wang H; Liu X; An K; Wu W; Lu Z Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28590527 [TBL] [Abstract][Full Text] [Related]
12. Effects of Cr Content on Microstructure and Mechanical Properties of Co-Free FeCr Cui P; Wang W; Nong Z; Lai Z; Liu Y; Zhu J Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176230 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous Strength-Ductility Enhancement of a Nano-Lamellar AlCoCrFeNi Bhattacharjee T; Wani IS; Sheikh S; Clark IT; Okawa T; Guo S; Bhattacharjee PP; Tsuji N Sci Rep; 2018 Feb; 8(1):3276. PubMed ID: 29459746 [TBL] [Abstract][Full Text] [Related]
14. Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy. Pei Z; Zhao S; Detrois M; Jablonski PD; Hawk JA; Alman DE; Asta M; Minor AM; Gao MC Nat Commun; 2023 May; 14(1):2519. PubMed ID: 37130855 [TBL] [Abstract][Full Text] [Related]
15. Harnessing instability for work hardening in multi-principal element alloys. Xu B; Duan H; Chen X; Wang J; Ma Y; Jiang P; Yuan F; Wang Y; Ren Y; Du K; Wei Y; Wu X Nat Mater; 2024 Jun; 23(6):755-761. PubMed ID: 38605195 [TBL] [Abstract][Full Text] [Related]
16. Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations. Li T; Liu T; Zhao S; Chen Y; Luan J; Jiao Z; Ritchie RO; Dai L Nat Commun; 2023 May; 14(1):3006. PubMed ID: 37230991 [TBL] [Abstract][Full Text] [Related]
17. Strength-Ductility Mechanism of CoCrFeMnNi High-Entropy Alloys with Inverse Gradient-Grained Structures. Chen J; Hu Y; Wang P; Li J; Zheng Y; Lu C; Zhang B; Shen J; Cao Y Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612208 [TBL] [Abstract][Full Text] [Related]
18. Plasticity Improvement in a Co-Rich Co Li Y; Chen Y; Nutor RK; Wang N; Cao Q; Wang X; Zhang D; Jiang JZ Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770158 [TBL] [Abstract][Full Text] [Related]
19. Ultrastrong Al Feng X; Zhang J; Wu K; Liang X; Liu G; Sun J Nanoscale; 2018 Jul; 10(28):13329-13334. PubMed ID: 29989622 [TBL] [Abstract][Full Text] [Related]
20. Loss-free tensile ductility of dual-structure titanium composites via an interdiffusion and self-organization strategy. Liu L; Li S; Pan D; Hui D; Zhang X; Li B; Liang T; Shi P; Bahador A; Umeda J; Kondoh K; Li S; Gao L; Wang Z; Li G; Zhang S; Wang R; Chen W Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2302234120. PubMed ID: 37399391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]