These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38200302)

  • 21. Testing a quantum error-correcting code on various platforms.
    Guo Q; Zhao YY; Grassl M; Nie X; Xiang GY; Xin T; Yin ZQ; Zeng B
    Sci Bull (Beijing); 2021 Jan; 66(1):29-35. PubMed ID: 36654309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Step-by-step magic state encoding for efficient fault-tolerant quantum computation.
    Goto H
    Sci Rep; 2014 Dec; 4():7501. PubMed ID: 25511387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Realization of three-qubit quantum error correction with superconducting circuits.
    Reed MD; DiCarlo L; Nigg SE; Sun L; Frunzio L; Girvin SM; Schoelkopf RJ
    Nature; 2012 Feb; 482(7385):382-5. PubMed ID: 22297844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantifying magic for multi-qubit operations.
    Seddon JR; Campbell ET
    Proc Math Phys Eng Sci; 2019 Jul; 475(2227):20190251. PubMed ID: 31423103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beating the break-even point with a discrete-variable-encoded logical qubit.
    Ni Z; Li S; Deng X; Cai Y; Zhang L; Wang W; Yang ZB; Yu H; Yan F; Liu S; Zou CL; Sun L; Zheng SB; Xu Y; Yu D
    Nature; 2023 Apr; 616(7955):56-60. PubMed ID: 36949191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Logical measurement-based quantum computation in circuit-QED.
    Joo J; Lee CW; Kono S; Kim J
    Sci Rep; 2019 Nov; 9(1):16592. PubMed ID: 31719588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluxonium: An Alternative Qubit Platform for High-Fidelity Operations.
    Bao F; Deng H; Ding D; Gao R; Gao X; Huang C; Jiang X; Ku HS; Li Z; Ma X; Ni X; Qin J; Song Z; Sun H; Tang C; Wang T; Wu F; Xia T; Yu W; Zhang F; Zhang G; Zhang X; Zhou J; Zhu X; Shi Y; Chen J; Zhao HH; Deng C
    Phys Rev Lett; 2022 Jul; 129(1):010502. PubMed ID: 35841558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parallel entangling operations on a universal ion-trap quantum computer.
    Figgatt C; Ostrander A; Linke NM; Landsman KA; Zhu D; Maslov D; Monroe C
    Nature; 2019 Aug; 572(7769):368-372. PubMed ID: 31341283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental Simulation of Larger Quantum Circuits with Fewer Superconducting Qubits.
    Ying C; Cheng B; Zhao Y; Huang HL; Zhang YN; Gong M; Wu Y; Wang S; Liang F; Lin J; Xu Y; Deng H; Rong H; Peng CZ; Yung MH; Zhu X; Pan JW
    Phys Rev Lett; 2023 Mar; 130(11):110601. PubMed ID: 37001092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protecting a bosonic qubit with autonomous quantum error correction.
    Gertler JM; Baker B; Li J; Shirol S; Koch J; Wang C
    Nature; 2021 Feb; 590(7845):243-248. PubMed ID: 33568826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of genuine entanglement up to 51 superconducting qubits.
    Cao S; Wu B; Chen F; Gong M; Wu Y; Ye Y; Zha C; Qian H; Ying C; Guo S; Zhu Q; Huang HL; Zhao Y; Li S; Wang S; Yu J; Fan D; Wu D; Su H; Deng H; Rong H; Li Y; Zhang K; Chung TH; Liang F; Lin J; Xu Y; Sun L; Guo C; Li N; Huo YH; Peng CZ; Lu CY; Yuan X; Zhu X; Pan JW
    Nature; 2023 Jul; 619(7971):738-742. PubMed ID: 37438533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits.
    Córcoles AD; Magesan E; Srinivasan SJ; Cross AW; Steffen M; Gambetta JM; Chow JM
    Nat Commun; 2015 Apr; 6():6979. PubMed ID: 25923200
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Realization of quantum error correction.
    Chiaverini J; Leibfried D; Schaetz T; Barrett MD; Blakestad RB; Britton J; Itano WM; Jost JD; Knill E; Langer C; Ozeri R; Wineland DJ
    Nature; 2004 Dec; 432(7017):602-5. PubMed ID: 15577904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thresholds for Universal Concatenated Quantum Codes.
    Chamberland C; Jochym-O'Connor T; Laflamme R
    Phys Rev Lett; 2016 Jul; 117(1):010501. PubMed ID: 27419549
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Error Mitigation and Quantum-Assisted Simulation in the Error Corrected Regime.
    Lostaglio M; Ciani A
    Phys Rev Lett; 2021 Nov; 127(20):200506. PubMed ID: 34860056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Minimizing resource overheads for fault-tolerant preparation of encoded states of the Steane code.
    Goto H
    Sci Rep; 2016 Jan; 6():19578. PubMed ID: 26812959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Error-Transparent Quantum Gates for Small Logical Qubit Architectures.
    Kapit E
    Phys Rev Lett; 2018 Feb; 120(5):050503. PubMed ID: 29481172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-fidelity parallel entangling gates on a neutral-atom quantum computer.
    Evered SJ; Bluvstein D; Kalinowski M; Ebadi S; Manovitz T; Zhou H; Li SH; Geim AA; Wang TT; Maskara N; Levine H; Semeghini G; Greiner M; Vuletić V; Lukin MD
    Nature; 2023 Oct; 622(7982):268-272. PubMed ID: 37821591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implementing a strand of a scalable fault-tolerant quantum computing fabric.
    Chow JM; Gambetta JM; Magesan E; Abraham DW; Cross AW; Johnson BR; Masluk NA; Ryan CA; Smolin JA; Srinivasan SJ; Steffen M
    Nat Commun; 2014 Jun; 5():4015. PubMed ID: 24958160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits.
    Plantenberg JH; de Groot PC; Harmans CJ; Mooij JE
    Nature; 2007 Jun; 447(7146):836-9. PubMed ID: 17568742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.