BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 38200316)

  • 1. The CRISPR effector Cam1 mediates membrane depolarization for phage defence.
    Baca CF; Yu Y; Rostøl JT; Majumder P; Patel DJ; Marraffini LA
    Nature; 2024 Jan; 625(7996):797-804. PubMed ID: 38200316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR antiphage defence mediated by the cyclic nucleotide-binding membrane protein Csx23.
    Grüschow S; McQuarrie S; Ackermann K; McMahon S; Bode BE; Gloster TM; White MF
    Nucleic Acids Res; 2024 Apr; 52(6):2761-2775. PubMed ID: 38471818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Card1 nuclease provides defence during type III CRISPR immunity.
    Rostøl JT; Xie W; Kuryavyi V; Maguin P; Kao K; Froom R; Patel DJ; Marraffini LA
    Nature; 2021 Feb; 590(7847):624-629. PubMed ID: 33461211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Csx3 is a cyclic oligonucleotide phosphodiesterase associated with type III CRISPR-Cas that degrades the second messenger cA
    Brown S; Gauvin CC; Charbonneau AA; Burman N; Lawrence CM
    J Biol Chem; 2020 Oct; 295(44):14963-14972. PubMed ID: 32826317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The diverse arsenal of type III CRISPR-Cas-associated CARF and SAVED effectors.
    Steens JA; Salazar CRP; Staals RHJ
    Biochem Soc Trans; 2022 Oct; 50(5):1353-1364. PubMed ID: 36282000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6.
    Garcia-Doval C; Schwede F; Berk C; Rostøl JT; Niewoehner O; Tejero O; Hall J; Marraffini LA; Jinek M
    Nat Commun; 2020 Mar; 11(1):1596. PubMed ID: 32221291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic properties of CARF-domain proteins in
    Ding J; Schuergers N; Baehre H; Wilde A
    Front Microbiol; 2022; 13():1046388. PubMed ID: 36419420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers.
    Niewoehner O; Garcia-Doval C; Rostøl JT; Berk C; Schwede F; Bigler L; Hall J; Marraffini LA; Jinek M
    Nature; 2017 Aug; 548(7669):543-548. PubMed ID: 28722012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage.
    Athukoralage JS; McQuarrie S; Grüschow S; Graham S; Gloster TM; White MF
    Elife; 2020 Jun; 9():. PubMed ID: 32597755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of cyclic oligoadenylate degradation by ancillary Type III CRISPR-Cas ring nucleases.
    Molina R; Jensen ALG; Marchena-Hurtado J; López-Méndez B; Stella S; Montoya G
    Nucleic Acids Res; 2021 Dec; 49(21):12577-12590. PubMed ID: 34850143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage.
    Meeske AJ; Nakandakari-Higa S; Marraffini LA
    Nature; 2019 Jun; 570(7760):241-245. PubMed ID: 31142834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence.
    Zhu W; McQuarrie S; Grüschow S; McMahon SA; Graham S; Gloster TM; White MF
    Nucleic Acids Res; 2021 Mar; 49(5):2777-2789. PubMed ID: 33590098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type III CRISPR-Cas: beyond the Cas10 effector complex.
    Stella G; Marraffini L
    Trends Biochem Sci; 2024 Jan; 49(1):28-37. PubMed ID: 37949766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.
    Modell JW; Jiang W; Marraffini LA
    Nature; 2017 Apr; 544(7648):101-104. PubMed ID: 28355179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antiviral type III CRISPR signalling via conjugation of ATP and SAM.
    Chi H; Hoikkala V; Grüschow S; Graham S; Shirran S; White MF
    Nature; 2023 Oct; 622(7984):826-833. PubMed ID: 37853119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiviral signalling by a cyclic nucleotide activated CRISPR protease.
    Rouillon C; Schneberger N; Chi H; Blumenstock K; Da Vela S; Ackermann K; Moecking J; Peter MF; Boenigk W; Seifert R; Bode BE; Schmid-Burgk JL; Svergun D; Geyer M; White MF; Hagelueken G
    Nature; 2023 Feb; 614(7946):168-174. PubMed ID: 36423657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity.
    Athukoralage JS; McMahon SA; Zhang C; Grüschow S; Graham S; Krupovic M; Whitaker RJ; Gloster TM; White MF
    Nature; 2020 Jan; 577(7791):572-575. PubMed ID: 31942067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CBASS Immunity Uses CARF-Related Effectors to Sense 3'-5'- and 2'-5'-Linked Cyclic Oligonucleotide Signals and Protect Bacteria from Phage Infection.
    Lowey B; Whiteley AT; Keszei AFA; Morehouse BR; Mathews IT; Antine SP; Cabrera VJ; Kashin D; Niemann P; Jain M; Schwede F; Mekalanos JJ; Shao S; Lee ASY; Kranzusch PJ
    Cell; 2020 Jul; 182(1):38-49.e17. PubMed ID: 32544385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic oligoadenylate signalling mediates Mycobacterium tuberculosis CRISPR defence.
    Grüschow S; Athukoralage JS; Graham S; Hoogeboom T; White MF
    Nucleic Acids Res; 2019 Sep; 47(17):9259-9270. PubMed ID: 31392987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate.
    Athukoralage JS; Rouillon C; Graham S; Grüschow S; White MF
    Nature; 2018 Oct; 562(7726):277-280. PubMed ID: 30232454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.