BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38200571)

  • 1. MK-BMC: a Multi-Kernel framework with Boosted distance metrics for Microbiome data for Classification.
    Xu H; Wang T; Miao Y; Qian M; Yang Y; Wang S
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38200571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MKMR: a multi-kernel machine regression model to predict health outcomes using human microbiome data.
    Li B; Wang T; Qian M; Wang S
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37099694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation and differential abundance analysis of microbiome data incorporating phylogeny.
    Zhou C; Zhao H; Wang T
    Bioinformatics; 2021 Dec; 37(24):4652-4660. PubMed ID: 34302462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A distance-based approach for testing the mediation effect of the human microbiome.
    Zhang J; Wei Z; Chen J
    Bioinformatics; 2018 Jun; 34(11):1875-1883. PubMed ID: 29346509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A small-sample multivariate kernel machine test for microbiome association studies.
    Zhan X; Tong X; Zhao N; Maity A; Wu MC; Chen J
    Genet Epidemiol; 2017 Apr; 41(3):210-220. PubMed ID: 28019040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opportunities and limits of combining microbiome and genome data for complex trait prediction.
    PĂ©rez-Enciso M; Zingaretti LM; Ramayo-Caldas Y; de Los Campos G
    Genet Sel Evol; 2021 Aug; 53(1):65. PubMed ID: 34362312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal gut microbial relationships in the gut microbiome of wild baboons.
    Roche KE; Bjork JR; Dasari MR; Grieneisen L; Jansen D; Gould TJ; Gesquiere LR; Barreiro LB; Alberts SC; Blekhman R; Gilbert JA; Tung J; Mukherjee S; Archie EA
    Elife; 2023 May; 12():. PubMed ID: 37158607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly adaptive microbiome-based association test for survival traits.
    Koh H; Livanos AE; Blaser MJ; Li H
    BMC Genomics; 2018 Mar; 19(1):210. PubMed ID: 29558893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring methods to summarize gut microbiota composition for microbiability estimation and phenotypic prediction in swine.
    He Y; Tiezzi F; Jiang J; Howard J; Huang Y; Gray K; Choi JW; Maltecca C
    J Anim Sci; 2022 Sep; 100(9):. PubMed ID: 35775583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kernel-based genetic association analysis for microbiome phenotypes identifies host genetic drivers of beta-diversity.
    Liu H; Ling W; Hua X; Moon JY; Williams-Nguyen JS; Zhan X; Plantinga AM; Zhao N; Zhang A; Knight R; Qi Q; Burk RD; Kaplan RC; Wu MC
    Microbiome; 2023 Apr; 11(1):80. PubMed ID: 37081571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DCMD: Distance-based classification using mixture distributions on microbiome data.
    Shestopaloff K; Dong M; Gao F; Xu W
    PLoS Comput Biol; 2021 Mar; 17(3):e1008799. PubMed ID: 33711013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Distance-Based Kernel Association Test Based on the Generalized Linear Mixed Model for Correlated Microbiome Studies.
    Koh H; Li Y; Zhan X; Chen J; Zhao N
    Front Genet; 2019; 10():458. PubMed ID: 31156711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing in Microbiome-Profiling Studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test.
    Zhao N; Chen J; Carroll IM; Ringel-Kulka T; Epstein MP; Zhou H; Zhou JJ; Ringel Y; Li H; Wu MC
    Am J Hum Genet; 2015 May; 96(5):797-807. PubMed ID: 25957468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An empirical Bayes approach to normalization and differential abundance testing for microbiome data.
    Liu T; Zhao H; Wang T
    BMC Bioinformatics; 2020 Jun; 21(1):225. PubMed ID: 32493208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drinking Water Source and Intake Are Associated with Distinct Gut Microbiota Signatures in US and UK Populations.
    Vanhaecke T; Bretin O; Poirel M; Tap J
    J Nutr; 2022 Jan; 152(1):171-182. PubMed ID: 34642755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing microbiome associations with survival times at both the community and individual taxon levels.
    Hu Y; Li Y; Satten GA; Hu YJ
    PLoS Comput Biol; 2022 Sep; 18(9):e1010509. PubMed ID: 36103548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping.
    Koh H; Blaser MJ; Li H
    Microbiome; 2017 Apr; 5(1):45. PubMed ID: 28438217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zero is not absence: censoring-based differential abundance analysis for microbiome data.
    Chan LS; Li G
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38331411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach to testing mediation of the microbiome at both the community and individual taxon levels.
    Yue Y; Hu YJ
    Bioinformatics; 2022 Jun; 38(12):3173-3180. PubMed ID: 35512399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CACONET: a novel classification framework for microbial correlation networks.
    Xu Y; Nash K; Acharjee A; Gkoutos GV
    Bioinformatics; 2022 Mar; 38(6):1639-1647. PubMed ID: 34983063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.