BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38200712)

  • 1. Light irradiation changes the regulation pattern of BtCrgA on carotenogenesis in Blakeslea trispora.
    Yang J; Zeng M; Wu H; Han Z; Du ZR; Yu X; Luo W
    FEMS Microbiol Lett; 2024 Jan; 371():. PubMed ID: 38200712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Negative Regulator of Carotenogenesis in
    Luo W; Gong Z; Li N; Zhao Y; Zhang H; Yang X; Liu Y; Rao Z; Yu X
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31953331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora.
    Quiles-Rosillo MD; Ruiz-Vázquez RM; Torres-Martínez S; Garre V
    Fungal Genet Biol; 2005 Feb; 42(2):141-53. PubMed ID: 15670712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blakeslea trispora Photoreceptors: Identification and Functional Analysis.
    Luo W; Xue C; Zhao Y; Zhang H; Rao Z; Yu X
    Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32033952
    [No Abstract]   [Full Text] [Related]  

  • 5. Transcriptome sequencing and global analysis of blue light-responsive genes provide clues for high carotenoid yields in Blakeslea trispora.
    Ge X; Li R; Zhang X; Zhao J; Zhang Y; Xin Q
    Int Microbiol; 2022 May; 25(2):325-338. PubMed ID: 34746983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A negative regulator of light-inducible carotenogenesis in Mucor circinelloides.
    Navarro E; Lorca-Pascual JM; Quiles-Rosillo MD; Nicolás FE; Garre V; Torres-Martínez S; Ruiz-Vázquez RM
    Mol Genet Genomics; 2001 Nov; 266(3):463-70. PubMed ID: 11713676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilevel Regulation of Carotenoid Synthesis by Light and Active Oxygen in
    Luo W; Wang Y; Yang P; Qu Y; Yu X
    J Agric Food Chem; 2021 Sep; 69(37):10974-10988. PubMed ID: 34510898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid synthesis and phytoene synthase activity during mating of Blakeslea trispora.
    Breitenbach J; Fraser PD; Sandmann G
    Phytochemistry; 2012 Apr; 76():40-5. PubMed ID: 22281381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate β-carotene over-producing strains by genetic engineering.
    Zhang Y; Navarro E; Cánovas-Márquez JT; Almagro L; Chen H; Chen YQ; Zhang H; Torres-Martínez S; Chen W; Garre V
    Microb Cell Fact; 2016 Jun; 15():99. PubMed ID: 27266994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light regulates a Phycomyces blakesleeanus gene family similar to the carotenogenic repressor gene of Mucor circinelloides.
    Tagua VG; Navarro E; Gutiérrez G; Garre V; Corrochano LM
    Fungal Biol; 2020 May; 124(5):338-351. PubMed ID: 32389296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of mating-dependent transcription of Blakeslea trispora carotenoid biosynthesis genes carB and carRA by quantitative real-time PCR.
    Schmidt AD; Heinekamp T; Matuschek M; Liebmann B; Bollschweiler C; Brakhage AA
    Appl Microbiol Biotechnol; 2005 Jun; 67(4):549-55. PubMed ID: 15744487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SR5AL serves as a key regulatory gene in lycopene biosynthesis by Blakeslea trispora.
    Wang Q; Chen Y; Yang Q; Zhao J; Feng L; Wang M
    Microb Cell Fact; 2022 Jun; 21(1):126. PubMed ID: 35752808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and environmentally-friendly extraction of carotenoids from Blakeslea trispora.
    Wang HB; Zhang LW; Luo J; Yu LJ
    Biotechnol Lett; 2015 Nov; 37(11):2173-8. PubMed ID: 26209033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel vector-based RNAi method using mouse U6 promoter-driven shRNA expression in the filamentous fungus Blakeslea trispora.
    Li Y; Feng H; Jin L; Xin X; Yuan Q
    Biotechnol Lett; 2021 Sep; 43(9):1821-1830. PubMed ID: 34185215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of carotenogenesis in Blakeslea trispora.
    Rao S; Modi VV
    World Rev Nutr Diet; 1978; 31():149-53. PubMed ID: 735125
    [No Abstract]   [Full Text] [Related]  

  • 16. Cyclase inhibitor tripropylamine significantly enhanced lycopene accumulation in Blakeslea trispora.
    Wang Y; Chen X; Hong X; Du S; Liu C; Gong W; Chen D
    J Biosci Bioeng; 2016 Nov; 122(5):570-576. PubMed ID: 27238833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquinone and carotene production in the Mucorales Blakeslea and Phycomyces.
    Kuzina V; Cerdá-Olmedo E
    Appl Microbiol Biotechnol; 2007 Oct; 76(5):991-9. PubMed ID: 17609943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectroscopy for intracellular monitoring of carotenoid in Blakeslea trispora.
    Papaioannou EH; Liakopoulou-Kyriakides M; Christofilos D; Arvanitidis I; Kourouklis G
    Appl Biochem Biotechnol; 2009 Nov; 159(2):478-87. PubMed ID: 19130307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of factors affecting biosynthesis of carotenoids by the order Mucorales.
    Lampila LE; Wallen SE; Bullerman LB
    Mycopathologia; 1985 May; 90(2):65-80. PubMed ID: 3892300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RING-finger domain of the fungal repressor crgA is essential for accurate light regulation of carotenogenesis.
    Lorca-Pascual JM; Murcia-Flores L; Garre V; Torres-Martínez S; Ruiz-Vázquez RM
    Mol Microbiol; 2004 Jun; 52(5):1463-74. PubMed ID: 15165247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.