BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38201054)

  • 21. Evaluation of Dianhong black tea quality using near-infrared hyperspectral imaging technology.
    Ren G; Wang Y; Ning J; Zhang Z
    J Sci Food Agric; 2021 Mar; 101(5):2135-2142. PubMed ID: 32981110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-destructive detection of protein content in mulberry leaves by using hyperspectral imaging.
    Li X; Peng F; Wei Z; Han G; Liu J
    Front Plant Sci; 2023; 14():1275004. PubMed ID: 37900759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nondestructive detection of anthocyanin content in fresh leaves of purple maize using hyperspectral data.
    Yang X; Gao S; Gu X; Zhang C; Sun Q; Wei Z; Hu X; Qu X
    Appl Opt; 2022 Jul; 61(21):6213-6222. PubMed ID: 36256234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Determination of total nitrogen content in fresh tea leaf using visible-near infrared spectroscopy].
    Hu YG; Li PP; Mu JH; Mao HP; Wu CC; Chen B
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Dec; 28(12):2821-5. PubMed ID: 19248491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced Techniques for Hyperspectral Imaging in the Food Industry: Principles and Recent Applications.
    Ma J; Sun DW; Pu H; Cheng JH; Wei Q
    Annu Rev Food Sci Technol; 2019 Mar; 10():197-220. PubMed ID: 30633569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Principles of Hyperspectral Microscope Imaging Techniques and Their Applications in Food Quality and Safety Detection: A Review.
    Pu H; Lin L; Sun DW
    Compr Rev Food Sci Food Saf; 2019 Jul; 18(4):853-866. PubMed ID: 33337001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Research on moldy tea feature classification based on WKNN algorithm and NIR hyperspectral imaging.
    Xin Z; Jun S; Xiaohong W; Bing L; Ning Y; Chunxia D
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():378-383. PubMed ID: 30157445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and Validation of Near-Infrared Methods for the Quantitation of Caffeine, Epigallocatechin-3-gallate, and Moisture in Green Tea Production.
    Zhang S; Zuo Y; Wu Q; Wang J; Ban L; Yang H; Bai Z
    J Anal Methods Chem; 2021; 2021():9563162. PubMed ID: 34820146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emerging Spectroscopic and Spectral Imaging Techniques for the Rapid Detection of Microorganisms: An Overview.
    Wang K; Pu H; Sun DW
    Compr Rev Food Sci Food Saf; 2018 Mar; 17(2):256-273. PubMed ID: 33350086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid and non-destructive discrimination of special-grade flat green tea using Near-infrared spectroscopy.
    Li C; Guo H; Zong B; He P; Fan F; Gong S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():254-262. PubMed ID: 30121024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative visualization of photosynthetic pigments in tea leaves based on Raman spectroscopy and calibration model transfer.
    Zeng J; Ping W; Sanaeifar A; Xu X; Luo W; Sha J; Huang Z; Huang Y; Liu X; Zhan B; Zhang H; Li X
    Plant Methods; 2021 Jan; 17(1):4. PubMed ID: 33407678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Application of near-infrared spectroscopy to quality detection of milk and its products].
    Wang J; Wang JQ; Bu DP; Guo WJ; Shen JS; Wei HY; Zhou LY; Liu KL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1281-5. PubMed ID: 19650471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nondestructive Testing and Visualization of Catechin Content in Black Tea Fermentation Using Hyperspectral Imaging.
    Dong C; Yang C; Liu Z; Zhang R; Yan P; An T; Zhao Y; Li Y
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quality evaluation of Keemun black tea by fusing data obtained from near-infrared reflectance spectroscopy and computer vision sensors.
    Song Y; Wang X; Xie H; Li L; Ning J; Zhang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119522. PubMed ID: 33582437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.
    Manley M
    Chem Soc Rev; 2014 Dec; 43(24):8200-14. PubMed ID: 25156745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Color measurement of tea leaves at different drying periods using hyperspectral imaging technique.
    Xie C; Li X; Shao Y; He Y
    PLoS One; 2014; 9(12):e113422. PubMed ID: 25546335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of tea quality at different picking periods: A hyperspectral system coupled with a multibranch kernel attention network.
    Wang Y; Ren Y; Kang S; Yin C; Shi Y; Men H
    Food Chem; 2024 Feb; 433():137307. PubMed ID: 37683489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nondestructive discrimination of analogous density foreign matter inside soy protein meat semi-finished products based on transmission hyperspectral imaging.
    Shi Y; Wang Y; Hu X; Li Z; Huang X; Liang J; Zhang X; Zheng K; Zou X; Shi J
    Food Chem; 2023 Jun; 411():135431. PubMed ID: 36681022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LeafSpec-Dicot: An Accurate and Portable Hyperspectral Imaging Device for Dicot Leaves.
    Li X; Chen Z; Wang J; Jin J
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nondestructive Testing for Wheat Quality with Sensor Technology Based on Big Data.
    Tian YG; Zhang ZN; Tian SQ
    J Anal Methods Chem; 2020; 2020():8851509. PubMed ID: 33274108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.