These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 38201212)
21. Identification of small ubiquitin-like modifier substrates with diverse functions using the Xenopus egg extract system. Ma L; Aslanian A; Sun H; Jin M; Shi Y; Yates JR; Hunter T Mol Cell Proteomics; 2014 Jul; 13(7):1659-75. PubMed ID: 24797264 [TBL] [Abstract][Full Text] [Related]
22. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells. Bursomanno S; Beli P; Khan AM; Minocherhomji S; Wagner SA; Bekker-Jensen S; Mailand N; Choudhary C; Hickson ID; Liu Y DNA Repair (Amst); 2015 Jan; 25():84-96. PubMed ID: 25497329 [TBL] [Abstract][Full Text] [Related]
23. Spatiotemporal distribution of SUMOylation components during mouse brain development. Hasegawa Y; Yoshida D; Nakamura Y; Sakakibara S J Comp Neurol; 2014 Sep; 522(13):3020-36. PubMed ID: 24639124 [TBL] [Abstract][Full Text] [Related]
24. Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. Gocke CB; Yu H; Kang J J Biol Chem; 2005 Feb; 280(6):5004-12. PubMed ID: 15561718 [TBL] [Abstract][Full Text] [Related]
25. SUMO2 is essential while SUMO3 is dispensable for mouse embryonic development. Wang L; Wansleeben C; Zhao S; Miao P; Paschen W; Yang W EMBO Rep; 2014 Aug; 15(8):878-85. PubMed ID: 24891386 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of the interactions of HIV-1 integrase with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. Li Z; Wu S; Wang J; Li W; Lin Y; Ji C; Xue J; Chen J Int J Mol Med; 2012 Nov; 30(5):1053-60. PubMed ID: 22895527 [TBL] [Abstract][Full Text] [Related]
27. Alternative splicing of the SUMO1/2/3 transcripts affects cellular SUMOylation and produces functionally distinct SUMO protein isoforms. Acuña ML; García-Morin A; Orozco-Sepúlveda R; Ontiveros C; Flores A; Diaz AV; Gutiérrez-Zubiate I; Patil AR; Alvarado LA; Roy S; Russell WK; Rosas-Acosta G Sci Rep; 2023 Feb; 13(1):2309. PubMed ID: 36759644 [TBL] [Abstract][Full Text] [Related]
28. Evolution of SUMO Function and Chain Formation in Insects. Ureña E; Pirone L; Chafino S; Pérez C; Sutherland JD; Lang V; Rodriguez MS; Lopitz-Otsoa F; Blanco FJ; Barrio R; Martín D Mol Biol Evol; 2016 Feb; 33(2):568-84. PubMed ID: 26538142 [TBL] [Abstract][Full Text] [Related]
29. A genome-wide screen of Epstein-Barr virus proteins that modulate host SUMOylation identifies a SUMO E3 ligase conserved in herpesviruses. De La Cruz-Herrera CF; Shire K; Siddiqi UZ; Frappier L PLoS Pathog; 2018 Jul; 14(7):e1007176. PubMed ID: 29979787 [TBL] [Abstract][Full Text] [Related]
30. SUMOylation regulates the number and size of promyelocytic leukemia-nuclear bodies (PML-NBs) and arsenic perturbs SUMO dynamics on PML by insolubilizing PML in THP-1 cells. Hirano S; Udagawa O Arch Toxicol; 2022 Feb; 96(2):545-558. PubMed ID: 35001170 [TBL] [Abstract][Full Text] [Related]
31. Experimental comparison of energy landscape features of ubiquitin family proteins. Nandi T; Yadav A; Ainavarapu SRK Proteins; 2020 Mar; 88(3):449-461. PubMed ID: 31587348 [TBL] [Abstract][Full Text] [Related]
32. A role for paralog-specific sumoylation in histone deacetylase 1 stability. Citro S; Jaffray E; Hay RT; Seiser C; Chiocca S J Mol Cell Biol; 2013 Dec; 5(6):416-27. PubMed ID: 24068740 [TBL] [Abstract][Full Text] [Related]
33. Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. Dorval V; Fraser PE J Biol Chem; 2006 Apr; 281(15):9919-24. PubMed ID: 16464864 [TBL] [Abstract][Full Text] [Related]
35. Variation in expression of small ubiquitin-like modifiers in injured sciatic nerve of mice. Zhang DY; Yu K; Yang Z; Liu XZ; Ma XF; Li YX Neural Regen Res; 2019 Aug; 14(8):1455-1461. PubMed ID: 30964073 [TBL] [Abstract][Full Text] [Related]
36. The allosteric effect of the upper half of SENP1 contributes to its substrate selectivity for SUMO1 over SUMO2. Shi Y; Yasen M; Wang Z; Du T; Ding Y; Li X; Chai Z; Jie C; Ju G; Ji M J Biomol Struct Dyn; 2023; 41(21):12372-12386. PubMed ID: 36656084 [TBL] [Abstract][Full Text] [Related]
37. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Lee J; Lee Y; Lee MJ; Park E; Kang SH; Chung CH; Lee KH; Kim K Mol Cell Biol; 2008 Oct; 28(19):6056-65. PubMed ID: 18644859 [TBL] [Abstract][Full Text] [Related]
38. The Ubiquitin-Like SUMO System and Heart Function: From Development to Disease. Mendler L; Braun T; Müller S Circ Res; 2016 Jan; 118(1):132-44. PubMed ID: 26837744 [TBL] [Abstract][Full Text] [Related]
39. SUMO Conjugation and SUMO Chain Formation by Plant Enzymes. Tomanov K; Julian J; Ziba I; Bachmair A Methods Mol Biol; 2023; 2581():83-92. PubMed ID: 36413312 [TBL] [Abstract][Full Text] [Related]
40. Ang II Promotes SUMO2/3 Modification of RhoGDI1 Through Aos1 and Uba2 Subunits, and then Regulates RhoGDI1 Stability and Cell Proliferation. Qi Y; Guan H; Liang X; Sun J; Yao W Cardiovasc Drugs Ther; 2021 Aug; 35(4):769-773. PubMed ID: 33891248 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]