These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 38201212)

  • 41. In vivo characterization of the properties of SUMO1-specific monobodies.
    Berndt A; Wilkinson KA; Heimann MJ; Bishop P; Henley JM
    Biochem J; 2013 Dec; 456(3):385-95. PubMed ID: 24040933
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SUMO Chain Formation by Plant Enzymes.
    Tomanov K; Ziba I; Bachmair A
    Methods Mol Biol; 2016; 1450():97-105. PubMed ID: 27424748
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterizing the Conformational Dynamics of Human SUMO2: Insights into its Interaction with Metal Ions and SIMs.
    Kaur A; Singh H; Kumar D; Gahlay GK; Mithu VS
    Chembiochem; 2024 Jun; 25(11):e202400045. PubMed ID: 38593270
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterizing the differential distribution and targets of Sumo1 and Sumo2 in the mouse brain.
    Suk TR; Nguyen TT; Fisk ZA; Mitkovski M; Geertsma HM; Parmasad JA; Heer MM; Callaghan SM; Benseler F; Brose N; Tirard M; Rousseaux MWC
    iScience; 2023 Apr; 26(4):106350. PubMed ID: 37009224
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SumoPred-PLM: human SUMOylation and SUMO2/3 sites Prediction using Pre-trained Protein Language Model.
    Palacios AV; Acharya P; Peidl AS; Beck MR; Blanco E; Mishra A; Bawa-Khalfe T; Pakhrin SC
    NAR Genom Bioinform; 2024 Mar; 6(1):lqae011. PubMed ID: 38327870
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SUSP1 antagonizes formation of highly SUMO2/3-conjugated species.
    Mukhopadhyay D; Ayaydin F; Kolli N; Tan SH; Anan T; Kametaka A; Azuma Y; Wilkinson KD; Dasso M
    J Cell Biol; 2006 Sep; 174(7):939-49. PubMed ID: 17000875
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-molecule studies on PolySUMO proteins reveal their mechanical flexibility.
    Kotamarthi HC; Sharma R; Koti Ainavarapu SR
    Biophys J; 2013 May; 104(10):2273-81. PubMed ID: 23708367
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design.
    Gilbreth RN; Truong K; Madu I; Koide A; Wojcik JB; Li NS; Piccirilli JA; Chen Y; Koide S
    Proc Natl Acad Sci U S A; 2011 May; 108(19):7751-6. PubMed ID: 21518904
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitylation and SUMOylation pathways.
    Ahner A; Gong X; Frizzell RA
    FEBS J; 2013 Sep; 280(18):4430-8. PubMed ID: 23809253
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determinants of small ubiquitin-like modifier 1 (SUMO1) protein specificity, E3 ligase, and SUMO-RanGAP1 binding activities of nucleoporin RanBP2.
    Gareau JR; Reverter D; Lima CD
    J Biol Chem; 2012 Feb; 287(7):4740-51. PubMed ID: 22194619
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The post-translational modification, SUMOylation, and cancer (Review).
    Han ZJ; Feng YH; Gu BH; Li YM; Chen H
    Int J Oncol; 2018 Apr; 52(4):1081-1094. PubMed ID: 29484374
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SUMO1 Modification of Tau in Progressive Supranuclear Palsy.
    Takamura H; Nakayama Y; Ito H; Katayama T; Fraser PE; Matsuzaki S
    Mol Neurobiol; 2022 Jul; 59(7):4419-4435. PubMed ID: 35567706
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural and functional characterization of Tomato
    Salman A; Kotb A; Ghazy AI; Ibrahim EI; Al-Ateeq TK
    Saudi J Biol Sci; 2020 Jan; 27(1):352-357. PubMed ID: 31889857
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SUMO2 and SUMO3 transcription is differentially regulated by oxidative stress in an Sp1-dependent manner.
    Sang J; Yang K; Sun Y; Han Y; Cang H; Chen Y; Shi G; Wang K; Zhou J; Wang X; Yi J
    Biochem J; 2011 Apr; 435(2):489-98. PubMed ID: 21291420
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modification of papillomavirus E2 proteins by the small ubiquitin-like modifier family members (SUMOs).
    Wu YC; Roark AA; Bian XL; Wilson VG
    Virology; 2008 Sep; 378(2):329-38. PubMed ID: 18619639
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes.
    Balasubramaniyan N; Luo Y; Sun AQ; Suchy FJ
    J Biol Chem; 2013 May; 288(19):13850-62. PubMed ID: 23546875
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modulation of Abeta generation by small ubiquitin-like modifiers does not require conjugation to target proteins.
    Dorval V; Mazzella MJ; Mathews PM; Hay RT; Fraser PE
    Biochem J; 2007 Jun; 404(2):309-16. PubMed ID: 17346237
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of endogenous SUMO1 accepter sites by mass spectrometry.
    Hsiao HH; Meulmeester E; Urlaub H
    Methods Mol Biol; 2012; 893():431-41. PubMed ID: 22665316
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of the tumor suppressor PTEN by SUMO.
    González-Santamaría J; Campagna M; Ortega-Molina A; Marcos-Villar L; de la Cruz-Herrera CF; González D; Gallego P; Lopitz-Otsoa F; Esteban M; Rodríguez MS; Serrano M; Rivas C
    Cell Death Dis; 2012 Sep; 3(9):e393. PubMed ID: 23013792
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers.
    Rosas-Acosta G; Russell WK; Deyrieux A; Russell DH; Wilson VG
    Mol Cell Proteomics; 2005 Jan; 4(1):56-72. PubMed ID: 15576338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.