BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38201822)

  • 1. Rigidity with Flexibility: Porous Triptycene Networks for Enhancing Methane Storage.
    Guo F; Ma H; Yang BB; Wang Z; Meng XG; Bu JH; Zhang C
    Polymers (Basel); 2024 Jan; 16(1):. PubMed ID: 38201822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reticular Chemistry for Highly Porous Metal-Organic Frameworks: The Chemistry and Applications.
    Chen Z; Kirlikovali KO; Li P; Farha OK
    Acc Chem Res; 2022 Feb; 55(4):579-591. PubMed ID: 35112832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dibromomethane Knitted Highly Porous Hyper-Cross-Linked Polymers for Efficient High-Pressure Methane Storage.
    Yang S; Zhong Z; Hu J; Wang X; Tan B
    Adv Mater; 2024 May; 36(19):e2307579. PubMed ID: 38288565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous Triptycene Network Based on Tröger's Base for CO
    Liu N; Ma H; Sun R; Zhang QP; Tan B; Zhang C
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30402-30408. PubMed ID: 37313999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three dimensional graphdiyne-like porous triptycene network for gas adsorption and separation.
    Ma H; Yang BB; Wang Z; Wu K; Zhang C
    RSC Adv; 2022 Oct; 12(44):28299-28305. PubMed ID: 36320518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy.
    Chen Z; Li P; Anderson R; Wang X; Zhang X; Robison L; Redfern LR; Moribe S; Islamoglu T; Gómez-Gualdrón DA; Yildirim T; Stoddart JF; Farha OK
    Science; 2020 Apr; 368(6488):297-303. PubMed ID: 32299950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Low-Pressure Methane Adsorption Isotherms for Higher-Throughput Screening of Methane Storage Materials.
    Korman KJ; Decker GE; Dworzak MR; Deegan MM; Antonio AM; Taggart GA; Bloch ED
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40318-40327. PubMed ID: 32786240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Characterization of a Novel Microporous Dihydroxyl-Functionalized Triptycene-Diamine-Based Polyimide for Natural Gas Membrane Separation.
    Alaslai N; Ma X; Ghanem B; Wang Y; Alghunaimi F; Pinnau I
    Macromol Rapid Commun; 2017 Sep; 38(18):. PubMed ID: 28691317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triptycene-based microporous polymer with pending tetrazole moieties for CO2 -capture application.
    Liu L; Zhang J
    Macromol Rapid Commun; 2013 Dec; 34(23-24):1833-7. PubMed ID: 24214288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methane Storage in Paddlewheel-Based Porous Coordination Cages.
    Rowland CA; Lorzing GR; Gosselin AJ; Trump BA; Yap GPA; Brown CM; Bloch ED
    J Am Chem Soc; 2018 Sep; 140(36):11153-11157. PubMed ID: 30122041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zn-Based Metal-Organic Frameworks Using Triptycene Hexacarboxylate Ligands: Synthesis, Structure, and Gas-Sorption Properties.
    Sugamata K; Yamada S; Yanagisawa D; Amanokura N; Shirai A; Minoura M
    Chemistry; 2023 Nov; 29(64):e202302080. PubMed ID: 37589440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BILP-19-An Ultramicroporous Organic Network with Exceptional Carbon Dioxide Uptake.
    Klumpen C; Radakovitsch F; Jess A; Senker J
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28805700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand Tailoring Strategy of a Metal-Organic Framework for Optimizing Methane Storage Working Capacities.
    Chen JR; Luo YQ; He S; Zhou HL; Huang XC
    Inorg Chem; 2022 Jul; 61(27):10417-10424. PubMed ID: 35767723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium Oxalate as an Alternative Activating Reagent of Corn Starch-Derived Porous Carbons for Methane Storage.
    Lee JH; Park SJ
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7124-7129. PubMed ID: 32604569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of MWCNT-Based Hyper-Cross-Linked Polymers with Thickness-Tunable Organic Porous Layers.
    Zhang C; Wang S; Zhan Z; Amin AM; Tan B
    ACS Macro Lett; 2019 Apr; 8(4):403-408. PubMed ID: 35651123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal Doping to Control Gate Opening and Increase Methane Working Capacity in Isostructural Flexible Diamondoid Networks.
    Wang SM; Shivanna M; Lama P; Yang QY; Barbour LJ; Zaworotko MJ
    ChemSusChem; 2023 May; 16(9):e202300069. PubMed ID: 36745466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thickness controllable hypercrosslinked porous polymer nanofilm with high CO
    Shi P; Chen X; Sun Z; Li C; Xu Z; Jiang X; Jiang B
    J Colloid Interface Sci; 2020 Mar; 563():272-280. PubMed ID: 31881492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential of organic polymer-based hydrogen storage materials.
    Budd PM; Butler A; Selbie J; Mahmood K; McKeown NB; Ghanem B; Msayib K; Book D; Walton A
    Phys Chem Chem Phys; 2007 Apr; 9(15):1802-8. PubMed ID: 17415491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers.
    Gatti G; Errahali M; Tei L; Cossi M; Marchese L
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30960572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico design of porous polymer networks: high-throughput screening for methane storage materials.
    Martin RL; Simon CM; Smit B; Haranczyk M
    J Am Chem Soc; 2014 Apr; 136(13):5006-22. PubMed ID: 24611543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.