These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 38202349)

  • 21. The kinetics of ageing in dry-stored seeds: a comparison of viability loss and RNA degradation in unique legacy seed collections.
    Fleming MB; Hill LM; Walters C
    Ann Bot; 2019 Jul; 123(7):1133-1146. PubMed ID: 30566591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Seeds of alpine plants are short lived: implications for long-term conservation.
    Mondoni A; Probert RJ; Rossi G; Vegini E; Hay FR
    Ann Bot; 2011 Jan; 107(1):171-9. PubMed ID: 21081585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of novel seed longevity genes related to oxidative stress and seed coat by genome-wide association studies and reverse genetics.
    Renard J; Niñoles R; Martínez-Almonacid I; Gayubas B; Mateos-Fernández R; Bissoli G; Bueso E; Serrano R; Gadea J
    Plant Cell Environ; 2020 Oct; 43(10):2523-2539. PubMed ID: 32519347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Staying Alive: Molecular Aspects of Seed Longevity.
    Sano N; Rajjou L; North HM; Debeaujon I; Marion-Poll A; Seo M
    Plant Cell Physiol; 2016 Apr; 57(4):660-74. PubMed ID: 26637538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seed longevity phenotyping: recommendations on research methodology.
    Hay FR; Valdez R; Lee JS; Sta Cruz PC
    J Exp Bot; 2019 Jan; 70(2):425-434. PubMed ID: 30325434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of Seed Germination and Abiotic Stresses by Gibberellins and Abscisic Acid.
    Vishal B; Kumar PP
    Front Plant Sci; 2018; 9():838. PubMed ID: 29973944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular genetic bases of seed resistance to oxidative stress during storage.
    Shvachko NА; Khlestkina EK
    Vavilovskii Zhurnal Genet Selektsii; 2020 Aug; 24(5):451-458. PubMed ID: 33659828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species.
    Zhang K; Zhang Y; Sun J; Meng J; Tao J
    Plant Physiol Biochem; 2021 Jan; 158():475-485. PubMed ID: 33250322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis.
    Yano R; Kanno Y; Jikumaru Y; Nakabayashi K; Kamiya Y; Nambara E
    Plant Physiol; 2009 Oct; 151(2):641-54. PubMed ID: 19648230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards a better monitoring of seed ageing under ex situ seed conservation.
    Fu YB; Ahmed Z; Diederichsen A
    Conserv Physiol; 2015; 3(1):cov026. PubMed ID: 27293711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seed life span and food security.
    Colville L; Pritchard HW
    New Phytol; 2019 Oct; 224(2):557-562. PubMed ID: 31225902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ectopic expression of NnPER1, a Nelumbo nucifera 1-cysteine peroxiredoxin antioxidant, enhances seed longevity and stress tolerance in Arabidopsis.
    Chen HH; Chu P; Zhou YL; Ding Y; Li Y; Liu J; Jiang LW; Huang SZ
    Plant J; 2016 Nov; 88(4):608-619. PubMed ID: 27464651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions.
    Groot SP; Surki AA; de Vos RC; Kodde J
    Ann Bot; 2012 Nov; 110(6):1149-59. PubMed ID: 22967856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heteromorphic seeds of wheat wild relatives show germination niche differentiation.
    Gianella M; Balestrazzi A; Pagano A; Müller JV; Kyratzis AC; Kikodze D; Canella M; Mondoni A; Rossi G; Guzzon F
    Plant Biol (Stuttg); 2020 Mar; 22(2):191-202. PubMed ID: 31639249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Underlying Biochemical and Molecular Mechanisms for Seed Germination.
    Farooq MA; Ma W; Shen S; Gu A
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Raffinose family oligosaccharides (RFOs): role in seed vigor and longevity.
    Salvi P; Varshney V; Majee M
    Biosci Rep; 2022 Oct; 42(10):. PubMed ID: 36149314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Updated role of ABA in seed maturation, dormancy, and germination.
    Ali F; Qanmber G; Li F; Wang Z
    J Adv Res; 2022 Jan; 35():199-214. PubMed ID: 35003801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Os4BGlu14, a monolignol β-Glucosidase, negatively affects seed longevity by influencing primary metabolism in rice.
    Ren RJ; Wang P; Wang LN; Su JP; Sun LJ; Sun Y; Chen DF; Chen XW
    Plant Mol Biol; 2020 Nov; 104(4-5):513-527. PubMed ID: 32833149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination.
    Linkies A; Leubner-Metzger G
    Plant Cell Rep; 2012 Feb; 31(2):253-70. PubMed ID: 22044964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seed Longevity-The Evolution of Knowledge and a Conceptual Framework.
    Nadarajan J; Walters C; Pritchard HW; Ballesteros D; Colville L
    Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.