These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 38202447)
21. Selection of the optimal bands of first-derivative fluorescence characteristics for leaf nitrogen concentration estimation. Yang J; Cheng Y; Du L; Gong W; Shi S; Sun J; Chen B Appl Opt; 2019 Jul; 58(21):5720-5727. PubMed ID: 31503871 [TBL] [Abstract][Full Text] [Related]
22. Estimating the leaf nitrogen content of paddy rice by using the combined reflectance and laser-induced fluorescence spectra. Yang J; Du L; Sun J; Zhang Z; Chen B; Shi S; Gong W; Song S Opt Express; 2016 Aug; 24(17):19354-65. PubMed ID: 27557214 [TBL] [Abstract][Full Text] [Related]
23. [Quantitative relationships between leaf total nitrogen concentration and canopy reflectance spectra of rice]. Zhou DQ; Tian YC; Yao X; Zhu Y; Cao WX Ying Yong Sheng Tai Xue Bao; 2008 Feb; 19(2):337-44. PubMed ID: 18464640 [TBL] [Abstract][Full Text] [Related]
24. A study on water quality parameters estimation for urban rivers based on ground hyperspectral remote sensing technology. Hou Y; Zhang A; Lv R; Zhao S; Ma J; Zhang H; Li Z Environ Sci Pollut Res Int; 2022 Sep; 29(42):63640-63654. PubMed ID: 35460477 [TBL] [Abstract][Full Text] [Related]
25. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250 [TBL] [Abstract][Full Text] [Related]
26. [Estimating total nitrogen content in wetland vegetation based on measured reflectance spectra]. Liu K; Zhao WJ; Guo XY; Wang YH; Sun YH; Miao Q Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Feb; 32(2):465-71. PubMed ID: 22512191 [TBL] [Abstract][Full Text] [Related]
27. Potential of vegetation indices combined with laser-induced fluorescence parameters for monitoring leaf nitrogen content in paddy rice. Yang J; Du L; Gong W; Shi S; Sun J; Chen B PLoS One; 2018; 13(1):e0191068. PubMed ID: 29342190 [TBL] [Abstract][Full Text] [Related]
28. Hyperspectral characteristic analysis for leaf nitrogen content in different growth stages of winter wheat. Haiying L; Hongchun Z Appl Opt; 2016 Dec; 55(34):D151-D161. PubMed ID: 27958448 [TBL] [Abstract][Full Text] [Related]
29. Estimation of soil water and organic matter content in medium and low yield fields of Ningxia Yellow River Irrigation area based on hyperspectral information. Ding QD; Wang Y; Zhang J; Chen RH; Jia KL; Li XL Ying Yong Sheng Tai Xue Bao; 2023 Nov; 34(11):3011-3020. PubMed ID: 37997412 [TBL] [Abstract][Full Text] [Related]
30. Enhancing estimation of cover crop biomass using field-based high-throughput phenotyping and machine learning models. Bai G; Koehler-Cole K; Scoby D; Thapa VR; Basche A; Ge Y Front Plant Sci; 2023; 14():1277672. PubMed ID: 38259938 [TBL] [Abstract][Full Text] [Related]
31. Monitoring Wheat Growth Using a Portable Three-Band Instrument for Crop Growth Monitoring and Diagnosis. Li H; Lin W; Pang F; Jiang X; Cao W; Zhu Y; Ni J Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32443796 [TBL] [Abstract][Full Text] [Related]
32. Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features. Sun X; Yang Z; Su P; Wei K; Wang Z; Yang C; Wang C; Qin M; Xiao L; Yang W; Zhang M; Song X; Feng M Front Plant Sci; 2023; 14():1158837. PubMed ID: 37063231 [TBL] [Abstract][Full Text] [Related]
33. Estimating leaf nitrogen concentration based on the combination with fluorescence spectrum and first-derivative. Yang J; Du L; Gong W; Shi S; Sun J R Soc Open Sci; 2020 Feb; 7(2):191941. PubMed ID: 32257346 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer. Sun J; Shi S; Gong W; Yang J; Du L; Song S; Chen B; Zhang Z Sci Rep; 2017 Jan; 7():40362. PubMed ID: 28091610 [TBL] [Abstract][Full Text] [Related]
35. [Inversion of Soil Organic Matter Content Using Hyperspectral Data Based on Continuous Wavelet Transformation]. Yu L; Hong YS; Zhou Y; Zhu Q Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1428-33. PubMed ID: 30001021 [TBL] [Abstract][Full Text] [Related]
36. Estimation of soil organic matter content in Yinchuan Plain based on fractional derivative combined with spectral indices. Shang TH; Chen RH; Zhang JH; Wang YJ Ying Yong Sheng Tai Xue Bao; 2023 Mar; 34(3):717-725. PubMed ID: 37087655 [TBL] [Abstract][Full Text] [Related]
37. Based on machine learning algorithms for estimating leaf phosphorus concentration of rice using optimized spectral indices and continuous wavelet transform. Zhang Y; Wang T; Li Z; Wang T; Cao N Front Plant Sci; 2023; 14():1185915. PubMed ID: 37304713 [TBL] [Abstract][Full Text] [Related]
38. Comparison of new hyperspectral index and machine learning models for prediction of winter wheat leaf water content. Zhang J; Zhang W; Xiong S; Song Z; Tian W; Shi L; Ma X Plant Methods; 2021 Mar; 17(1):34. PubMed ID: 33789711 [TBL] [Abstract][Full Text] [Related]
39. Predicting leaf nitrogen content in wolfberry trees by hyperspectral transformation and machine learning for precision agriculture. Li Y; Wang H; Zhao H; Zhang L PLoS One; 2024; 19(9):e0306851. PubMed ID: 39325703 [TBL] [Abstract][Full Text] [Related]
40. A remote sensing-based strategy for mapping potentially toxic elements of soils: Temporal-spatial-spectral covariates combined with random forest. Xu X; Wang Z; Song X; Zhan W; Yang S Environ Res; 2024 Jan; 240(Pt 1):117570. PubMed ID: 37939802 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]