These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38202500)

  • 21. Carbon-reinforced Ni
    Deng XG; Fan LQ; Fu XY; Tang T; Lin SH; Chen L; Yu FD; Huang YF; Huang ML; Wu JH
    J Colloid Interface Sci; 2024 May; 661():237-248. PubMed ID: 38301462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries.
    Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust and Fast Lithium Storage Enabled by Polypyrrole-Coated Nitrogen and Phosphorus Co-Doped Hollow Carbon Nanospheres for Lithium-Ion Capacitors.
    Zhang M; Zheng X; Mu J; Liu P; Yuan W; Li S; Wang X; Fang H; Liu H; Xing T; Hu H; Wu M
    Front Chem; 2021; 9():760473. PubMed ID: 34631673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid Li-Ion Capacitor Operated within an All-Climate Temperature Range from -60 to +55 °C.
    Yin Y; Fang Z; Chen J; Peng Y; Zhu L; Wang C; Wang Y; Dong X; Xia Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45630-45638. PubMed ID: 34541855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors.
    Li B; Zheng J; Zhang H; Jin L; Yang D; Lv H; Shen C; Shellikeri A; Zheng Y; Gong R; Zheng JP; Zhang C
    Adv Mater; 2018 Apr; 30(17):e1705670. PubMed ID: 29527751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.
    Sun F; Gao J; Zhu Y; Pi X; Wang L; Liu X; Qin Y
    Sci Rep; 2017 Feb; 7():40990. PubMed ID: 28155853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Safer High-Energy Lithium-Ion Capacitor Using Fast-Charging and Stable ω-Li
    Lan X; Liu X; Meng T; Yang S; Shen Y; Hu X
    Small Methods; 2023 Apr; 7(4):e2201290. PubMed ID: 36811324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fe
    Sun M; Chen X; Tan S; He Y; Saha P; Cheng Q
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Holey Ti
    Zhou HY; Lin LW; Sui ZY; Wang HY; Han BH
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12161-12170. PubMed ID: 36812348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorine-Enriched Graphdiyne as an Efficient Anode in Lithium-Ion Capacitors.
    Shen X; He J; Wang K; Li X; Wang X; Yang Z; Wang N; Zhang Y; Huang C
    ChemSusChem; 2019 Apr; 12(7):1342-1348. PubMed ID: 30710428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Mechanically Flexible Necklace-Like Architecture for Achieving Fast Charging and High Capacity in Advanced Lithium-Ion Capacitors.
    Liang T; Mao Z; Li L; Wang R; He B; Gong Y; Jin J; Yan C; Wang H
    Small; 2022 Jul; 18(27):e2201792. PubMed ID: 35661404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molybdenum Sulfide Nanoflowers as Electrodes for Efficient and Scalable Lithium-Ion Capacitors.
    Mir RA; Hoseini AHA; Hansen EJ; Tao L; Zhang Y; Liu J
    Chemistry; 2024 Jul; 30(40):e202400907. PubMed ID: 38649319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spinel LiMn
    Xiang J; Zhang P; Lv S; Ma Y; Zhao Q; Sui Y; Ye Y; Qin C
    RSC Adv; 2021 Apr; 11(25):14891-14898. PubMed ID: 35424028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. All-Covalent Organic Framework Nanofilms Assembled Lithium-Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics.
    Xu X; Zhang J; Zhang Z; Lu G; Cao W; Wang N; Xia Y; Feng Q; Qiao S
    Nanomicro Lett; 2024 Feb; 16(1):116. PubMed ID: 38358567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface Modification of Li
    Hsu SC; Wang KS; Lin YT; Huang JH; Wu NJ; Kang JL; Weng HC; Liu TY
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A High-Performance Lithium-Ion Capacitor Based on 2D Nanosheet Materials.
    Li S; Chen J; Cui M; Cai G; Wang J; Cui P; Gong X; Lee PS
    Small; 2017 Feb; 13(6):. PubMed ID: 27893190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances of Carbon Materials for Dual-Carbon Lithium-Ion Capacitors: A Review.
    Duan Y; Li C; Ye Z; Li H; Yang Y; Sui D; Lu Y
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution-Based Deep Prelithiation for Lithium-Ion Capacitors with High Energy Density.
    Jeon S; Lm S; Kang I; Shin D; Yu SH; Lee M; Hong J
    Small; 2024 Feb; ():e2401295. PubMed ID: 38412421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A New Free-Standing Aqueous Zinc-Ion Capacitor Based on MnO
    Wang S; Wang Q; Zeng W; Wang M; Ruan L; Ma Y
    Nanomicro Lett; 2019 Aug; 11(1):70. PubMed ID: 34138022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Performance Li-Ion and Na-Ion Capacitors Based on a Spinel Li
    Akshay M; Jyothilakshmi S; Lee YS; Aravindan V
    Small; 2024 Apr; 20(15):e2307248. PubMed ID: 37994396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.