These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 38202508)
1. The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds. Wang Z; Zhou W; Yang M; Yang Y; Hu J; Qin C; Zhang G; Liu S; Chen R; Xiao L Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202508 [TBL] [Abstract][Full Text] [Related]
2. Addressing molecular optomechanical effects in nanocavity-enhanced Raman scattering beyond the single plasmonic mode. Zhang Y; Esteban R; Boto RA; Urbieta M; Arrieta X; Shan C; Li S; Baumberg JJ; Aizpurua J Nanoscale; 2021 Jan; 13(3):1938-1954. PubMed ID: 33442716 [TBL] [Abstract][Full Text] [Related]
3. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds. Hugall JT; Baumberg JJ Nano Lett; 2015 Apr; 15(4):2600-4. PubMed ID: 25734469 [TBL] [Abstract][Full Text] [Related]
5. Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities. Ahmed A; Banjac K; Verlekar SS; Cometto FP; Lingenfelder M; Galland C ACS Photonics; 2021 Jun; 8(6):1863-1872. PubMed ID: 34164567 [TBL] [Abstract][Full Text] [Related]
6. Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols. Son J; Kim GH; Lee Y; Lee C; Cha S; Nam JM J Am Chem Soc; 2022 Dec; 144(49):22337-22351. PubMed ID: 36473154 [TBL] [Abstract][Full Text] [Related]
7. Construction of nanoparticle-on-mirror nanocavities and their applications in plasmon-enhanced spectroscopy. Peng W; Zhou JW; Li ML; Sun L; Zhang YJ; Li JF Chem Sci; 2024 Feb; 15(8):2697-2711. PubMed ID: 38404398 [TBL] [Abstract][Full Text] [Related]
8. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Nam JM; Oh JW; Lee H; Suh YD Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009 [TBL] [Abstract][Full Text] [Related]
9. Quantitative Plasmon Mode and Surface-Enhanced Raman Scattering Analyses of Strongly Coupled Plasmonic Nanotrimers with Diverse Geometries. Lee H; Kim GH; Lee JH; Kim NH; Nam JM; Suh YD Nano Lett; 2015 Jul; 15(7):4628-36. PubMed ID: 26075353 [TBL] [Abstract][Full Text] [Related]
10. Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis. Ten A; Lomonosov V; Boukouvala C; Ringe E ACS Nano; 2024 Jul; 18(28):18785-18799. PubMed ID: 38963330 [TBL] [Abstract][Full Text] [Related]
11. Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene. Liu D; Wu T; Zhang Q; Wang X; Guo X; Su Y; Zhu Y; Shao M; Chen H; Luo Y; Lei D ACS Nano; 2019 Jul; 13(7):7644-7654. PubMed ID: 31244032 [TBL] [Abstract][Full Text] [Related]
13. Tracking Nanoelectrochemistry Using Individual Plasmonic Nanocavities. Di Martino G; Turek VA; Lombardi A; Szabó I; de Nijs B; Kuhn A; Rosta E; Baumberg JJ Nano Lett; 2017 Aug; 17(8):4840-4845. PubMed ID: 28686457 [TBL] [Abstract][Full Text] [Related]
14. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas. Kanehira Y; Tapio K; Wegner G; Kogikoski S; Rüstig S; Prietzel C; Busch K; Bald I ACS Nano; 2023 Nov; 17(21):21227-21239. PubMed ID: 37847540 [TBL] [Abstract][Full Text] [Related]
15. Near-unity Raman β-factor of surface-enhanced Raman scattering in a waveguide. Fu M; Mota MPDP; Xiao X; Jacassi A; Güsken NA; Chen Y; Xiao H; Li Y; Riaz A; Maier SA; Oulton RF Nat Nanotechnol; 2022 Dec; 17(12):1251-1257. PubMed ID: 36302960 [TBL] [Abstract][Full Text] [Related]