These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 38202530)
1. Bayesian Optimization of Wet-Impregnated Co-Mo/Al Shin S; Song H; Shin YS; Lee J; Seo TH Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202530 [TBL] [Abstract][Full Text] [Related]
2. Carbon nanotubes synthesis over coal ash based catalysts using polypropylene waste via CVD process: Influence of catalyst and reaction temperature. Chitriv SP; Saini V; Ratna D; P VR J Environ Manage; 2024 Aug; 366():121881. PubMed ID: 39018861 [TBL] [Abstract][Full Text] [Related]
3. Impacts of Mo Promotion on Nickel-Based Catalysts for the Synthesis of High Quality Carbon Nanotubes Using CO₂ as the Carbon Source. Li S; Sun S; Chu W; Li J; Wang J; Hu J; Jiang C J Nanosci Nanotechnol; 2020 Feb; 20(2):1109-1117. PubMed ID: 31383111 [TBL] [Abstract][Full Text] [Related]
4. Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes. Liu H; Takagi D; Chiashi S; Chokan T; Homma Y J Nanosci Nanotechnol; 2010 Jun; 10(6):4068-73. PubMed ID: 20355416 [TBL] [Abstract][Full Text] [Related]
5. Catalytic hydrodeoxygenation of rubber seed oil over sonochemically synthesized Ni-Mo/γ-Al Ameen M; Azizan MT; Ramli A; Yusup S; Alnarabiji MS Ultrason Sonochem; 2019 Mar; 51():90-102. PubMed ID: 30514489 [TBL] [Abstract][Full Text] [Related]
6. Temperature programmed CVD: a novel technique to investigate carbon nanotube synthesis on FeMo/MgO catalysts. Teixeira AP; Lemos BR; Magalhães LA; Ardisson JD; Lago RM; Furtado CA; Santos AP J Nanosci Nanotechnol; 2012 Mar; 12(3):2661-7. PubMed ID: 22755105 [TBL] [Abstract][Full Text] [Related]
7. EFFECT OF CATALYST PREPARATION CONDITIONS ON THE HYDRODESULFURIZATION OF THIOPHENE OVER Co-Mo/γ-Al Chen CL; Lin SS; Liu TC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002; 37(6):1147-1157. PubMed ID: 28880801 [TBL] [Abstract][Full Text] [Related]
8. Atomic-Scale Evidence of Catalyst Evolution for the Structure-Controlled Growth of Single-Walled Carbon Nanotubes. Zhao X; Sun S; Yang F; Li Y Acc Chem Res; 2022 Dec; 55(23):3334-3344. PubMed ID: 36384282 [TBL] [Abstract][Full Text] [Related]
9. Formation of Thermally Stable, High-Areal-Density, and Small-Diameter Catalyst Nanoparticles via Intermittent Sputtering Deposition for the High-Density Growth of Carbon Nanotubes. Koji H; Kusumoto Y; Hatta A; Furuta H Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159710 [TBL] [Abstract][Full Text] [Related]
10. Revisiting behaviour of monometallic catalysts in chemical vapour deposition synthesis of single-walled carbon nanotubes. Xiang R; Maruyama S R Soc Open Sci; 2018 Aug; 5(8):180345. PubMed ID: 30225021 [TBL] [Abstract][Full Text] [Related]
11. Influence of carbon source and Fe-catalyst support on the growth of multi-walled carbon nanotubes. Donato MG; Galvagno S; Lanza M; Messina G; Milone C; Piperopoulos E; Pistone A; Santangelo S J Nanosci Nanotechnol; 2009 Jun; 9(6):3815-23. PubMed ID: 19504925 [TBL] [Abstract][Full Text] [Related]
12. Effects of Catalyst Pretreatment on Carbon Nanotube Synthesis from Methane Using Thin Stainless-Steel Foil as Catalyst by Chemical Vapor Deposition Method. Huynh TM; Nguyen S; Nguyen NTK; Nguyen HM; Do NUP; Nguyen DC; Nguyen LH; Nguyen CV Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33379133 [TBL] [Abstract][Full Text] [Related]
13. Growth and Mechanics of Heterogeneous, 3D Carbon Nanotube Forest Microstructures Formed by Sequential Selective-Area Synthesis. Hines R; Hajilounezhad T; Love-Baker C; Koerner G; Maschmann MR ACS Appl Mater Interfaces; 2020 Apr; 12(15):17893-17900. PubMed ID: 32208632 [TBL] [Abstract][Full Text] [Related]
14. Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth. Magrez A; Seo JW; Smajda R; Mionić M; Forró L Materials (Basel); 2010 Nov; 3(11):4871-4891. PubMed ID: 28883358 [TBL] [Abstract][Full Text] [Related]
16. The Synergistic Effect of a Bimetallic Catalyst for the Synthesis of Carbon Nanotube Aerogels and their Predominant Chirality. Moon SY; Kim WS Chemistry; 2019 Oct; 25(59):13635-13639. PubMed ID: 31407390 [TBL] [Abstract][Full Text] [Related]
17. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes. Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797 [TBL] [Abstract][Full Text] [Related]
18. Effect of catalyst preparation conditions on the hydrodesulfurization of thiophene over Co-Mo/gamma-Al2O3. Chen CL; Lin SS; Liu TC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002; 37(6):1147-57. PubMed ID: 12090286 [TBL] [Abstract][Full Text] [Related]
19. Optimization of Synthesis Conditions of Carbon Nanotubes via Ultrasonic-Assisted Floating Catalyst Deposition Using Response Surface Methodology. Mohammadian N; Ghoreishi SM; Hafeziyeh S; Saeidi S; Dionysiou DD Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29747451 [TBL] [Abstract][Full Text] [Related]
20. Low temperature multi-catalytic growth and growth mechanism of carbon nanotubes on carbon fiber surfaces. Yao Z; Xia A; Wang D; Wang C Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37783207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]