These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38202548)

  • 1. In Vivo Evaluation of Bone Regenerative Capacity of the Novel Nanobiomaterial: β-Tricalcium Phosphate Polylactic Acid-co-Glycolide (β-TCP/PLLA/PGA) for Use in Maxillofacial Bone Defects.
    Ramanathan M; Shijirbold A; Okui T; Tatsumi H; Kotani T; Shimamura Y; Morioka R; Ayasaka K; Kanno T
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone Regeneration Capacity of Newly Developed Uncalcined/Unsintered Hydroxyapatite and Poly-l-lactide-co-glycolide Sheet in Maxillofacial Surgery: An In Vivo Study.
    Ngo HX; Dong QN; Bai Y; Sha J; Ishizuka S; Okui T; Sukegawa S; Kanno T
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33374294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term degradation of a poly-lactide co-glycolide/β-tricalcium phosphate biocomposite interference screw.
    Barber FA; Dockery WD; Hrnack SA
    Arthroscopy; 2011 May; 27(5):637-43. PubMed ID: 21429700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Hard and Soft Tissue Responses to Four Different Generation Bioresorbable Materials-Poly-l-Lactic Acid (PLLA), Poly-l-Lactic Acid/Polyglycolic Acid (PLLA/PGA), Uncalcined/Unsintered Hydroxyapatite/Poly-l-Lactic Acid (u-HA/PLLA) and Uncalcined/Unsintered Hydroxyapatite/Poly-l-Lactic Acid/Polyglycolic Acid (u-HA/PLLA/PGA) in Maxillofacial Surgery: An In-Vivo Animal Study.
    Ayasaka K; Ramanathan M; Huy NX; Shijirbold A; Okui T; Tatsumi H; Kotani T; Shimamura Y; Morioka R; Kanno T
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactive Regeneration Potential of the Newly Developed Uncalcined/Unsintered Hydroxyapatite and Poly-l-Lactide-Co-Glycolide Biomaterial in Maxillofacial Reconstructive Surgery: An In Vivo Preliminary Study.
    Ishizuka S; Dong QN; Ngo HX; Bai Y; Sha J; Toda E; Okui T; Kanno T
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34068558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of Application of the Newly Developed Nano-Biomaterial, β-TCP/PDLLA, in Maxillofacial Reconstructive Surgery: A Pilot Rat Study.
    Toda E; Bai Y; Sha J; Dong QN; Ngo HX; Suyama T; Miyamoto K; Matsuzaki Y; Kanno T
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33503931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The degradation outcome of biocomposite suture anchors made from poly L-lactide-co-glycolide and β-tricalcium phosphate.
    Barber FA; Dockery WD; Cowden CH
    Arthroscopy; 2013 Nov; 29(11):1834-9. PubMed ID: 24209681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate.
    Bizenjima T; Takeuchi T; Seshima F; Saito A
    Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.
    Cao H; Kuboyama N
    Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration by means of a three-dimensional printed scaffold in a rat cranial defect.
    Kwon DY; Park JH; Jang SH; Park JY; Jang JW; Min BH; Kim WD; Lee HB; Lee J; Kim MS
    J Tissue Eng Regen Med; 2018 Feb; 12(2):516-528. PubMed ID: 28763610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesenchymal stem cells and porous β-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(-biomaterials) circulating system for the repair of critical size bone defects in goat tibia.
    Chu W; Gan Y; Zhuang Y; Wang X; Zhao J; Tang T; Dai K
    Stem Cell Res Ther; 2018 Jun; 9(1):157. PubMed ID: 29895312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acceleration of bone formation by octacalcium phosphate composite in a rat tibia critical-sized defect.
    Jeong CH; Kim J; Kim HS; Lim SY; Han D; Huser AJ; Lee SB; Gim Y; Ji JH; Kim D; Aldosari AM; Yun K; Kwak YH
    J Orthop Translat; 2022 Nov; 37():100-112. PubMed ID: 36262961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of a Three-Dimensional Porous Uncalcined and Unsintered Hydroxyapatite/poly-d/l-lactide Composite as a Regenerative Biomaterial in Maxillofacial Surgery.
    Bai Y; Kanno T; Tatsumi H; Miyamoto K; Sha J; Hideshima K; Matsuzaki Y
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the Bone Regenerative Capacity of Three-Dimensional Uncalcined and Unsintered Hydroxyapatite/Poly-d/l-Lactide and Beta-Tricalcium Phosphate Used as Bone Graft Substitutes.
    Bai Y; Sha J; Kanno T; Miyamoto K; Hideshima K; Matsuzaki Y
    J Invest Surg; 2021 Mar; 34(3):243-256. PubMed ID: 31122080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsintered Hydroxyapatite and Poly-L-Lactide Composite Screws/Plates for Stabilizing β-Tricalcium Phosphate Bone Implants.
    Sakamoto A; Okamoto T; Matsuda S
    Clin Orthop Surg; 2018 Jun; 10(2):253-259. PubMed ID: 29854351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research of osteoblastic induced rat bone marrow mesenchymal stem cells cultured on β-TCP/PLLA porous scaffold.
    Yang Y; Wu J; Jin G; Li L; Li Z; Li C
    Int J Clin Exp Med; 2015; 8(3):3202-9. PubMed ID: 26064209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of two bone substitutes of novel cotton-like β-TCP/PDLGA and granular β-TCP on bone regeneration in the femoral bone defect of the Beagle dogs.
    Okada Y; Yamanaka Y; Menuki K; Zenke Y; Tsukamoto M; Tajima T; Kosugi K; Kawasaki M; Nakamura E; Toyota N; Kawabe Y; Sakai A
    Bone Rep; 2020 Dec; 13():100718. PubMed ID: 33024798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone Regeneration Potential of Uncalcined and Unsintered Hydroxyapatite/Poly l-lactide Bioactive/Osteoconductive Sheet Used for Maxillofacial Reconstructive Surgery: An In Vivo Study.
    Dong QN; Kanno T; Bai Y; Sha J; Hideshima K
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31514283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosilicated collagen/β-tricalcium phosphate composites as a BMP-2-delivering bone-graft substitute for accelerated craniofacial bone regeneration.
    Lee DK; Ki MR; Kim EH; Park CJ; Ryu JJ; Jang HS; Pack SP; Jo YK; Jun SH
    Biomater Res; 2021 Apr; 25(1):13. PubMed ID: 33883043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.