These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38202548)

  • 21. Poly (γ-glutamic acid)/beta-TCP nanocomposites via in situ copolymerization: Preparation and characterization.
    Shu XL; Shi QS; Feng J; Yang YH; Zhou G; Li WR
    J Biomater Appl; 2016 Jul; 31(1):102-11. PubMed ID: 26945810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospun PLLA nanofiber scaffolds and their use in combination with BMP-2 for reconstruction of bone defects.
    Schofer MD; Roessler PP; Schaefer J; Theisen C; Schlimme S; Heverhagen JT; Voelker M; Dersch R; Agarwal S; Fuchs-Winkelmann S; Paletta JR
    PLoS One; 2011; 6(9):e25462. PubMed ID: 21980467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone Regeneration Using PEVAV/β-Tricalcium Phosphate Composite Scaffolds in Standardized Calvarial Defects: Micro-Computed Tomographic Experiment in Rats.
    Badwelan M; Alkindi M; Alghamdi O; Ahmed A; Ramalingam S; Alrahlah A
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34063709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Guided bone regeneration in standardized calvarial defects using beta-tricalcium phosphate and collagen membrane: a real-time in vivo micro-computed tomographic experiment in rats.
    Ramalingam S; Al-Rasheed A; ArRejaie A; Nooh N; Al-Kindi M; Al-Hezaimi K
    Odontology; 2016 May; 104(2):199-210. PubMed ID: 26156449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New approach to bone tissue engineering: simultaneous application of hydroxyapatite and bioactive glass coated on a poly(L-lactic acid) scaffold.
    Dinarvand P; Seyedjafari E; Shafiee A; Jandaghi AB; Doostmohammadi A; Fathi MH; Farhadian S; Soleimani M
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4518-24. PubMed ID: 21999213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gas-foamed poly(lactide-co-glycolide) and poly(lactide-co-glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects.
    Salonius E; Muhonen V; Lehto K; Järvinen E; Pyhältö T; Hannula M; Aula AS; Uppstu P; Haaparanta AM; Rosling A; Kellomäki M; Kiviranta I
    J Tissue Eng Regen Med; 2019 Mar; 13(3):406-415. PubMed ID: 30644174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of beta-tricalcium phosphate/poly-l-lactide composites on radial bone defects of rabbit.
    Zhu ZJ; Shen H; Wang YP; Jiang Y; Zhang XL; Yuan GY
    Asian Pac J Trop Med; 2013 Sep; 6(9):753-6. PubMed ID: 23827157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects--A molecular-biological and histological study.
    Kunert-Keil C; Scholz F; Gedrange T; Gredes T
    Ann Anat; 2015 May; 199():79-84. PubMed ID: 24439994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Efficacy of Recombinant Platelet-Derived Growth Factor on Beta-Tricalcium Phosphate to Regenerate Femoral Critical Sized Segmental Defects: Longitudinal
    Badwelan M; Alkindi M; Ramalingam S; Nooh N; Al Hezaimi K
    J Invest Surg; 2020 Jun; 33(5):476-488. PubMed ID: 30430878
    [No Abstract]   [Full Text] [Related]  

  • 30. Mesenchymal stem cells and platelet-rich plasma-impregnated polycaprolactone-β tricalcium phosphate bio-scaffold enhanced bone regeneration around dental implants.
    Almansoori AA; Kwon OJ; Nam JH; Seo YK; Song HR; Lee JH
    Int J Implant Dent; 2021 May; 7(1):35. PubMed ID: 33948811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo evaluation of bone regeneration behavior of novel β-tricalcium phosphate/layered double hydroxide nanocomposite granule as bone graft substitutes.
    Eskandari N; Shafiei SS; Dehghan MM; Farzad-Mohajeri S
    J Biomed Mater Res B Appl Biomater; 2022 May; 110(5):1001-1011. PubMed ID: 34846808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of three block bone substitutes for bone regeneration: long-term observation in the beagle dog.
    Sawada K; Nakahara K; Haga-Tsujimura M; Iizuka T; Fujioka-Kobayashi M; Igarashi K; Saulacic N
    Odontology; 2018 Oct; 106(4):398-407. PubMed ID: 29557992
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity.
    Shuai C; Yang W; Feng P; Peng S; Pan H
    Bioact Mater; 2021 Feb; 6(2):490-502. PubMed ID: 32995675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superior effect of MD05, beta-tricalcium phosphate coated with recombinant human growth/differentiation factor-5, compared to conventional bone substitutes in the rat calvarial defect model.
    Poehling S; Pippig SD; Hellerbrand K; Siedler M; Schütz A; Dony C
    J Periodontol; 2006 Sep; 77(9):1582-90. PubMed ID: 16945037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological Effects of Bioresorbable Materials in Alveolar Ridge Augmentation: Comparison of Early and Slow Resorbing Osteosynthesis Materials.
    Kawai H; Sukegawa S; Nakano K; Takabatake K; Ono S; Nagatsuka H; Furuki Y
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of BMP-2 on the osteoconductive properties of β-tricalcium phosphate in rat calvaria defects.
    Luvizuto ER; Tangl S; Zanoni G; Okamoto T; Sonoda CK; Gruber R; Okamoto R
    Biomaterials; 2011 May; 32(15):3855-61. PubMed ID: 21376389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone regeneration using composite non-demineralized xenogenic dentin with beta-tricalcium phosphate in experimental alveolar cleft repair in a rabbit model.
    Kamal M; Andersson L; Tolba R; Al-Asfour A; Bartella AK; Gremse F; Rosenhain S; Hölzle F; Kessler P; Lethaus B
    J Transl Med; 2017 Dec; 15(1):263. PubMed ID: 29274638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repair of the radial defect of rabbit with polyester/tricalcium phosphate scaffolds prepared by rapid prototyping technology.
    Sun L; Hu YY; Xiong Z; Wang WM; Pan Y
    Chin J Traumatol; 2006 Oct; 9(5):298-302. PubMed ID: 17026863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway.
    Zhang J; Liu X; Li H; Chen C; Hu B; Niu X; Li Q; Zhao B; Xie Z; Wang Y
    Stem Cell Res Ther; 2016 Sep; 7(1):136. PubMed ID: 27650895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.