These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38202559)

  • 1. Efficiency of InN/InGaN/GaN Intermediate-Band Solar Cell under the Effects of Hydrostatic Pressure, In-Compositions, Built-in-Electric Field, Confinement, and Thickness.
    Abboudi H; El Ghazi H; En-Nadir R; Basyooni-M Kabatas MA; Jorio A; Zorkani I
    Nanomaterials (Basel); 2024 Jan; 14(1):. PubMed ID: 38202559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Geometrical Shape on the Characteristics of the Multiple InN/In
    Aouami AE; Pérez LM; Feddi K; El-Yadri M; Dujardin F; Suazo MJ; Laroze D; Courel M; Feddi EM
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution-processed intermediate-band solar cells with lead sulfide quantum dots and lead halide perovskites.
    Hosokawa H; Tamaki R; Sawada T; Okonogi A; Sato H; Ogomi Y; Hayase S; Okada Y; Yano T
    Nat Commun; 2019 Jan; 10(1):43. PubMed ID: 30626874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Group-IIIA element doped BaSnS
    Xue Y; Lin C; Zhong J; Huang D; Persson C
    Phys Chem Chem Phys; 2024 Mar; 26(10):8380-8389. PubMed ID: 38404232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective suppression of efficiency droop in GaN-based light-emitting diodes: role of significant reduction of carrier density and built-in field.
    Yoo YS; Na JH; Son SJ; Cho YH
    Sci Rep; 2016 Oct; 6():34586. PubMed ID: 27756916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of the Built-In Electric Field in Recombination Processes of GaN/AlGaN Quantum Wells: Temperature- and Pressure-Dependent Study of Polar and Non-Polar Structures.
    Koronski K; Korona KP; Kryvyi S; Wierzbicka A; Sobczak K; Krukowski S; Strak P; Monroy E; Kaminska A
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A III-nitride nanowire solar cell fabricated using a hybrid coaxial and uniaxial InGaN/GaN multi quantum well nanostructure.
    Park JH; Nandi R; Sim JK; Um DY; Kang S; Kim JS; Lee CR
    RSC Adv; 2018 Jun; 8(37):20585-20592. PubMed ID: 35542348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing III-Nitride Built-In Field in Multi-Quantum Well LEDs.
    Chlipała M; Turski H
    ACS Appl Mater Interfaces; 2024 Apr; 16(18):24021-8. PubMed ID: 38666754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear and nonlinear optical absorption coefficients in InGaN/GaN quantum wells: Interplay between intense laser field and higher-order anharmonic potentials.
    En-Nadir R; Kabatas MAB; Tihtih M; El Ghazi H
    Heliyon; 2023 Dec; 9(12):e22867. PubMed ID: 38076119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detailed balance model for intermediate band solar cells with photon conservation.
    Lin CC; Liu WL; Shih CY
    Opt Express; 2011 Aug; 19(18):16927-33. PubMed ID: 21935053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Material Design of Ultra-Thin InN/GaN Superlattices for a Long-Wavelength Light Emission.
    Xiang L; Zhang E; Kang W; Lin W; Kang J
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.
    Beard MC; Luther JM; Semonin OE; Nozik AJ
    Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New strategies for colloidal-quantum-dot-based intermediate-band solar cells.
    Califano M; Skibinsky-Gitlin ES; Gómez-Campos FM; Rodríguez-Bolívar S
    J Chem Phys; 2019 Oct; 151(15):154101. PubMed ID: 31640383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots.
    Prado SJ; Marques GE; Alcalde AM
    J Phys Condens Matter; 2017 Nov; 29(44):445301. PubMed ID: 28799524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multilevel intermediate-band solar cell by InGaN/GaN quantum dots with a strain-modulated structure.
    Sang L; Liao M; Liang Q; Takeguchi M; Dierre B; Shen B; Sekiguchi T; Koide Y; Sumiya M
    Adv Mater; 2014 Mar; 26(9):1414-20. PubMed ID: 24310932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum efficiency of intermediate-band solar cells based on non-compensated n-p codoped TiO2.
    Wu F; Lan H; Zhang Z; Cui P
    J Chem Phys; 2012 Sep; 137(10):104702. PubMed ID: 22979881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Solar Cell Conversion Efficiency of InGaN/GaN Multiple Quantum Wells by Piezo-Phototronic Effect.
    Jiang C; Jing L; Huang X; Liu M; Du C; Liu T; Pu X; Hu W; Wang ZL
    ACS Nano; 2017 Sep; 11(9):9405-9412. PubMed ID: 28872837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the AlN strain compensation layer on InGaN quantum well red-light-emitting diodes beyond epitaxy.
    Liu Z; Nong M; Lu Y; Cao H; Yuvaraja S; Xiao N; Alnakhli Z; Aguileta Vázquez RR; Li X
    Opt Lett; 2022 Dec; 47(23):6229-6232. PubMed ID: 37219213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemically tuned intermediate band states in atomically thin Cu
    Kastuar SM; Ekuma CE
    Sci Adv; 2024 Apr; 10(15):eadl6752. PubMed ID: 38598620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonradiative recombination--critical in choosing quantum well number for InGaN/GaN light-emitting diodes.
    Zhang YP; Zhang ZH; Liu W; Tan ST; Ju ZG; Zhang XL; Ji Y; Wang LC; Kyaw Z; Hasanov N; Zhu BB; Lu SP; Sun XW; Demir HV
    Opt Express; 2015 Feb; 23(3):A34-42. PubMed ID: 25836251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.