These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38202626)

  • 21. Boronic Acid Accelerated Three-Component Reaction for the Synthesis of α-Sulfanyl-Substituted Indole-3-acetic Acids.
    Das A; Watanabe K; Morimoto H; Ohshima T
    Org Lett; 2017 Nov; 19(21):5794-5797. PubMed ID: 29043814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic asymmetric cycloaddition of ketenes and nitroso compounds: enantioselective synthesis of alpha-hydroxycarboxylic acid derivatives.
    Dochnahl M; Fu GC
    Angew Chem Int Ed Engl; 2009; 48(13):2391-3. PubMed ID: 19226588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of an engineered biocatalyst system for the production of medium-chain α,ω-dicarboxylic acids from medium-chain ω-hydroxycarboxylic acids.
    Kim TH; Kang SH; Park JB; Oh DK
    Biotechnol Bioeng; 2020 Sep; 117(9):2648-2657. PubMed ID: 32436987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of Dicarboxylic Acids from Aqueous Solutions of Diols with Hydrogen Evolution Catalyzed by an Iridium Complex.
    Toyooka G; Fujita KI
    ChemSusChem; 2020 Aug; 13(15):3820-3824. PubMed ID: 32449604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reductive Coupling of Carbon Dioxide and an Aldehyde Mediated by a Copper(I) Complex toward the Synthesis of α-Hydroxycarboxylic Acids.
    Masada K; Kusumoto S; Nozaki K
    Org Lett; 2020 Jul; 22(13):4922-4926. PubMed ID: 32282211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Primary alkylboronic acids as highly active catalysts for the dehydrative amide condensation of α-hydroxycarboxylic acids.
    Yamashita R; Sakakura A; Ishihara K
    Org Lett; 2013 Jul; 15(14):3654-7. PubMed ID: 23802908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin.
    Pua FL; Fang Z; Zakaria S; Guo F; Chia CH
    Biotechnol Biofuels; 2011 Dec; 4():56. PubMed ID: 22145867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enantioselective recognition of α-hydroxycarboxylic acids and N-Boc-amino acids by counterion-displacement assays with a chiral nickel(II) complex.
    He X; Zhang Q; Wang W; Lin L; Liu X; Feng X
    Org Lett; 2011 Feb; 13(4):804-7. PubMed ID: 21247141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conversion of lignocellulose into biochar and furfural through boron complexation and esterification reactions.
    Zhang J; Koubaa A; Xing D; Wang H; Wang Y; Liu W; Zhang Z; Wang X; Wang Q
    Bioresour Technol; 2020 Sep; 312():123586. PubMed ID: 32485612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk.
    Li M; Zheng Y; Chen Y; Zhu X
    Bioresour Technol; 2014 Feb; 154():345-8. PubMed ID: 24405650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalysis of the hydrolysis of ethyl mandelate and esterification of alpha-bromopropionic acid by lipase in microemulsions.
    Xiao H; Liu J; Li Z
    Chin J Biotechnol; 1993; 9(1):33-9. PubMed ID: 8155837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adding value to plant oils and fatty acids: Biological transformation of fatty acids into ω-hydroxycarboxylic, α,ω-dicarboxylic, and ω-aminocarboxylic acids.
    Seo JH; Lee SM; Lee J; Park JB
    J Biotechnol; 2015 Dec; 216():158-66. PubMed ID: 26546054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of Tropine-Based Functionalized Acidic Ionic Liquids and Catalysis of Esterification.
    Ni H; Zhang Y; Zong C; Hou Z; Song H; Chen Y; Liu X; Xu T; Luo Y
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sustainable Synthesis of α-Hydroxycarboxylic Acids by Manganese Catalyzed Acceptorless Dehydrogenative Coupling of Ethylene Glycol and Primary Alcohols.
    Waiba S; Maji K; Maiti M; Maji B
    Angew Chem Int Ed Engl; 2023 Mar; 62(10):e202218329. PubMed ID: 36629750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box-Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA.
    Liu W; Yin P; Liu X; Qu R
    Bioresour Technol; 2014 Dec; 173():266-271. PubMed ID: 25310862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carboxylic Acid Reductase Can Catalyze Ester Synthesis in Aqueous Environments.
    Pongpamorn P; Kiattisewee C; Kittipanukul N; Jaroensuk J; Trisrivirat D; Maenpuen S; Chaiyen P
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5749-5753. PubMed ID: 33247515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fatty Acid Esterification with Polyols over Acidic Montmorillonite.
    Chaari A; Neji SB; Frikha MH
    J Oleo Sci; 2017 May; 66(5):455-461. PubMed ID: 28381775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Esterification of acidified oil with methanol by SPES/PES catalytic membrane.
    Shi W; He B; Li J
    Bioresour Technol; 2011 May; 102(9):5389-93. PubMed ID: 20951577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hepatic Adenoma Subtypes on Hepatobiliary Phase of Gadoxetic Acid-Enhanced MRI: Systematic Review and Meta-Analysis.
    Kim TH; Woo S; Ebrahimzadeh S; McInnes MDF; Gerst SR; Do RK
    AJR Am J Roentgenol; 2023 Jan; 220(1):28-38. PubMed ID: 35920706
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.