These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 38202639)
1. Effects of Nanoparticle Size on the Thermal Decomposition Mechanisms of 3,5-Diamino-6-hydroxy-2-oxide-4-nitropyrimidone through ReaxFF Large-Scale Molecular Dynamics Simulations. Sun Z; Ji J; Zhu W Molecules; 2023 Dec; 29(1):. PubMed ID: 38202639 [TBL] [Abstract][Full Text] [Related]
2. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. Zhang L; Zybin SV; van Duin AC; Dasgupta S; Goddard WA; Kober EM J Phys Chem A; 2009 Oct; 113(40):10619-40. PubMed ID: 19791809 [TBL] [Abstract][Full Text] [Related]
3. Effect of density on the thermal decomposition mechanism of ε-CL-20: a ReaxFF reactive molecular dynamics simulation study. Wang F; Chen L; Geng D; Lu J; Wu J Phys Chem Chem Phys; 2018 Sep; 20(35):22600-22609. PubMed ID: 30116820 [TBL] [Abstract][Full Text] [Related]
4. Thermal Decomposition Mechanism of CL-20 at Different Temperatures by ReaxFF Reactive Molecular Dynamics Simulations. Wang F; Chen L; Geng D; Wu J; Lu J; Wang C J Phys Chem A; 2018 Apr; 122(16):3971-3979. PubMed ID: 29620895 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the decomposition mechanism of MTNP melt-cast explosive at different temperatures and pressures through ReaxFF/lg molecular dynamics simulations. Mao JS; Wang BG; Zhu R; Chen YF; Fu JB J Mol Model; 2023 Nov; 29(11):354. PubMed ID: 37910219 [TBL] [Abstract][Full Text] [Related]
6. Thermal decomposition mechanism of HMX/HTPB hybrid explosives studied by reactive molecular dynamics. Chen F; Li T; Zhao L; Guo G; Dong L; Mi F; Jia X; Ning R; Wang J; Cao D J Mol Model; 2024 Jun; 30(7):224. PubMed ID: 38907749 [TBL] [Abstract][Full Text] [Related]
7. Effects of Different Guests on Pyrolysis Mechanism of α-CL-20/Guest at High Temperatures by Reactive Molecular Dynamics Simulations at High Temperatures. Zhou M; Luo J; Xiang D Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768165 [TBL] [Abstract][Full Text] [Related]
8. Initial Decomposition Mechanism of 3-Nitro-1,2,4-triazol-5-one (NTO) under Shock Loading: ReaxFF Parameterization and Molecular Dynamic Study. Du L; Jin S; Nie P; She C; Wang J Molecules; 2021 Aug; 26(16):. PubMed ID: 34443396 [TBL] [Abstract][Full Text] [Related]
9. The thermal decomposition process of Composition B by ReaxFF/lg force field. Meng J; Zhang S; Gou R; Chen Y; Li Y; Chen M; Li Z J Mol Model; 2020 Aug; 26(9):245. PubMed ID: 32820387 [TBL] [Abstract][Full Text] [Related]
10. One Step Closer to an Ideal Insensitive Energetic Molecule: 3,5-Diamino-6-hydroxy-2-oxide-4-nitropyrimidone and its Derivatives. Zhang J; Feng Y; Bo Y; Staples RJ; Zhang J; Shreeve JM J Am Chem Soc; 2021 Aug; 143(32):12665-12674. PubMed ID: 34352172 [TBL] [Abstract][Full Text] [Related]
11. Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives. Mei Z; An Q; Zhao FQ; Xu SY; Ju XH Phys Chem Chem Phys; 2018 Nov; 20(46):29341-29350. PubMed ID: 30444501 [TBL] [Abstract][Full Text] [Related]
12. Effects of defects on thermal decomposition of HMX via ReaxFF molecular dynamics simulations. Zhou TT; Huang FL J Phys Chem B; 2011 Jan; 115(2):278-87. PubMed ID: 21142162 [TBL] [Abstract][Full Text] [Related]
13. ReaxFF Molecular Dynamics Study on the Influence of Temperature on Adsorption, Desorption, and Decomposition at the Acetic Acid/Water/ZnO(101̅0) Interface Enabling Cold Sintering. Sengul MY; Randall CA; van Duin ACT ACS Appl Mater Interfaces; 2018 Oct; 10(43):37717-37724. PubMed ID: 30280564 [TBL] [Abstract][Full Text] [Related]
14. ReaxFF-molecular dynamics simulations of non-oxidative and non-catalyzed thermal decomposition of methane at high temperatures. Lümmen N Phys Chem Chem Phys; 2010 Jul; 12(28):7883-93. PubMed ID: 20505869 [TBL] [Abstract][Full Text] [Related]
15. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. Chenoweth K; Cheung S; van Duin AC; Goddard WA; Kober EM J Am Chem Soc; 2005 May; 127(19):7192-202. PubMed ID: 15884961 [TBL] [Abstract][Full Text] [Related]
16. Thermal decomposition of hydrazines from reactive dynamics using the ReaxFF reactive force field. Zhang L; Duin AC; Zybin SV; Goddard WA J Phys Chem B; 2009 Aug; 113(31):10770-8. PubMed ID: 19601597 [TBL] [Abstract][Full Text] [Related]
17. Reactive Molecular Dynamics Simulations of the Thermal Decomposition Mechanism of 1,3,3-Trinitroazetidine. Junying WU; Yanxi H; Lijun Y; Deshen G; Fuping W; Heqi W; Lang C Chemphyschem; 2018 Oct; 19(20):2683-2695. PubMed ID: 30033624 [TBL] [Abstract][Full Text] [Related]
18. Reactive molecular dynamics study on the thermal decomposition reaction of a triple-base solid propellant. Yi J; Qin Z; Li H; Zhao F; Ma H; Guo Z J Mol Model; 2022 Jul; 28(8):216. PubMed ID: 35816239 [TBL] [Abstract][Full Text] [Related]
19. Initiation mechanisms and kinetic analysis of the isothermal decomposition of poly(α-methylstyrene): a ReaxFF molecular dynamics study. Hu S; Sun W; Fu J; Zhang Z; Wu W; Tang Y RSC Adv; 2018 Jan; 8(7):3423-3432. PubMed ID: 35542940 [TBL] [Abstract][Full Text] [Related]
20. Decomposition of condensed phase energetic materials: interplay between uni- and bimolecular mechanisms. Furman D; Kosloff R; Dubnikova F; Zybin SV; Goddard WA; Rom N; Hirshberg B; Zeiri Y J Am Chem Soc; 2014 Mar; 136(11):4192-200. PubMed ID: 24495109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]