BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 38202828)

  • 1. Supercapatteries as Hybrid Electrochemical Energy Storage Devices: Current Status and Future Prospects.
    Rudra S; Seo HW; Sarker S; Kim DM
    Molecules; 2024 Jan; 29(1):. PubMed ID: 38202828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives.
    Kumar N; Kim SB; Lee SY; Park SJ
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Approach for High-Voltage Electrical Double-Layer Capacitors Using Vertical Graphene Nanowalls with and without Nitrogen Doping.
    Chi YW; Hu CC; Shen HH; Huang KP
    Nano Lett; 2016 Sep; 16(9):5719-27. PubMed ID: 27548051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion-type NiCoMn triple perovskite fluorides for advanced aqueous supercapacitors, batteries and supercapatteries.
    Jia Z; Shi W; Ding R; Yu W; Li Y; Tan C; Sun X; Liu E
    Chem Commun (Camb); 2021 Aug; 57(64):7962-7965. PubMed ID: 34286760
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Perez I
    Phys Chem Chem Phys; 2023 Jan; 25(3):1476-1503. PubMed ID: 36602004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: a review.
    Tundwal A; Kumar H; Binoj BJ; Sharma R; Kumar G; Kumari R; Dhayal A; Yadav A; Singh D; Kumar P
    RSC Adv; 2024 Mar; 14(14):9406-9439. PubMed ID: 38516158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materials for electrochemical capacitors.
    Simon P; Gogotsi Y
    Nat Mater; 2008 Nov; 7(11):845-54. PubMed ID: 18956000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal Negatrode Supercapatteries: Advancements, Challenges, and Future Perspectives for High-Performance Energy Storage.
    Johan BA; Ali S; Shuaibu AD; Shah SS; Alzahrani AS; Aziz MA
    Chem Rec; 2024 Jan; 24(1):e202300239. PubMed ID: 38050957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical capacitors: mechanism, materials, systems, characterization and applications.
    Wang Y; Song Y; Xia Y
    Chem Soc Rev; 2016 Oct; 45(21):5925-5950. PubMed ID: 27545205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Capacitors with Confined Redox Electrolytes and Porous Electrodes.
    Yang N; Yu S; Zhang W; Cheng HM; Simon P; Jiang X
    Adv Mater; 2022 Aug; 34(34):e2202380. PubMed ID: 35413141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Progress in Carbonaceous and Redox-Active Nanoarchitectures for Hybrid Supercapacitors: Performance Evaluation, Challenges, and Future Prospects.
    Shah SS; Aziz MA; Yamani ZH
    Chem Rec; 2022 Jul; 22(7):e202200018. PubMed ID: 35426239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of 2D Materials to Potassium-Ion Hybrid Capacitors.
    Zhang D; Li L; Deng J; Gou Y; Fang J; Cui H; Zhao Y; Shang K
    ChemSusChem; 2021 May; 14(9):1974-1986. PubMed ID: 33829675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in WO
    Mineo G; Bruno E; Mirabella S
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37111003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass-Derived Carbon Materials as Prospective Electrodes for High-Energy Lithium- and Sodium-Ion Capacitors.
    Natarajan S; Lee YS; Aravindan V
    Chem Asian J; 2019 Apr; 14(7):936-951. PubMed ID: 30672661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nickel Cobaltite: A Positive Electrode Material for Hybrid Supercapacitors.
    Mahadik SM; Chodankar NR; Han YK; Dubal DP; Patil S
    ChemSusChem; 2021 Dec; 14(24):5384-5398. PubMed ID: 34643058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors.
    Lim E; Jo C; Lee J
    Nanoscale; 2016 Apr; 8(15):7827-33. PubMed ID: 27020465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in metal oxide-based electrode materials for safe and sustainable variants of supercapacitors.
    Asghar A; Khan K; Hakami O; Alamier WM; Ali SK; Zelai T; Rashid MS; Tareen AK; Al-Harthi EA
    Front Chem; 2024; 12():1402563. PubMed ID: 38831913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diamond Supercapacitors: Towards Durable, Safe, and Biocompatible Aqueous-Based Energy Storage.
    Chambers A; Prawer S; Ahnood A; Zhan H
    Front Chem; 2022; 10():924127. PubMed ID: 35668830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.