These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38202828)

  • 21. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.
    Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M
    Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbons and electrolytes for advanced supercapacitors.
    Béguin F; Presser V; Balducci A; Frackowiak E
    Adv Mater; 2014 Apr; 26(14):2219-51, 2283. PubMed ID: 24497347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MXene as a Charge Storage Host.
    Okubo M; Sugahara A; Kajiyama S; Yamada A
    Acc Chem Res; 2018 Mar; 51(3):591-599. PubMed ID: 29469564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast and stable redox reactions of MnO₂/CNT hybrid electrodes for dynamically stretchable pseudocapacitors.
    Gu T; Wei B
    Nanoscale; 2015 Jul; 7(27):11626-32. PubMed ID: 26090617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ribbon-like Nickel Cobaltite with Layer-by-Layer-Assembled Ordered Nanocrystallites for Next-Generation All-Solid-State Hybrid Supercapatteries.
    Srivastav S; Paliwal MK; Meher SK
    Langmuir; 2022 Apr; 38(13):3969-3983. PubMed ID: 35325536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Better Zn-Ion Storage Device: Recent Progress for Zn-Ion Hybrid Supercapacitors.
    Jin J; Geng X; Chen Q; Ren TL
    Nanomicro Lett; 2022 Feb; 14(1):64. PubMed ID: 35199258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High Energy Density Supercapacitors: An Overview of Efficient Electrode Materials, Electrolytes, Design, and Fabrication.
    Pathak M; Bhatt D; Bhatt RC; Bohra BS; Tatrari G; Rana S; Arya MC; Sahoo NG
    Chem Rec; 2024 Jan; 24(1):e202300236. PubMed ID: 37991268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal-Ion Hybrid Capacitors.
    Wu M; Zheng W; Hu X; Zhan F; He Q; Wang H; Zhang Q; Chen L
    Small; 2022 Dec; 18(50):e2205101. PubMed ID: 36285775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards establishing standard performance metrics for batteries, supercapacitors and beyond.
    Noori A; El-Kady MF; Rahmanifar MS; Kaner RB; Mousavi MF
    Chem Soc Rev; 2019 Mar; 48(5):1272-1341. PubMed ID: 30741286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porous organic polymers for high-performance supercapacitors.
    Liu X; Liu CF; Xu S; Cheng T; Wang S; Lai WY; Huang W
    Chem Soc Rev; 2022 Apr; 51(8):3181-3225. PubMed ID: 35348147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, characterizations and electrochemical performances of anhydrous CoC
    Mishra NK; Mondal R; Singh P
    RSC Adv; 2021 Oct; 11(54):33926-33937. PubMed ID: 35497288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.
    Yao F; Pham DT; Lee YH
    ChemSusChem; 2015 Jul; 8(14):2284-311. PubMed ID: 26140707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review on Comparison of Different Energy Storage Technologies Used in Micro-Energy Harvesting, WSNs, Low-Cost Microelectronic Devices: Challenges and Recommendations.
    Riaz A; Sarker MR; Saad MHM; Mohamed R
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry.
    Chen C; Hu L
    Acc Chem Res; 2018 Dec; 51(12):3154-3165. PubMed ID: 30299086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors.
    Islam S; Mia MM; Shah SS; Naher S; Shaikh MN; Aziz MA; Ahammad AJS
    Chem Rec; 2022 Jul; 22(7):e202200013. PubMed ID: 35313076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Progress in Micro-Supercapacitors with In-Plane Interdigital Electrode Architecture.
    Liu N; Gao Y
    Small; 2017 Dec; 13(45):. PubMed ID: 28976109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Asymmetric faradaic assembly of Bi
    Singh S; Sahoo RK; Shinde NM; Yun JM; Mane RS; Chung W; Kim KH
    RSC Adv; 2019 Oct; 9(55):32154-32164. PubMed ID: 35530813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Review on Recent Progress in the Development of Tungsten Oxide Based Electrodes for Electrochemical Energy Storage.
    Shinde PA; Jun SC
    ChemSusChem; 2020 Jan; 13(1):11-38. PubMed ID: 31605458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.