These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38202878)

  • 21. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor.
    Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wavelet Analysis and Self-Similarity of Photoplethysmography Signals for HRV Estimation and Quality Assessment.
    Neshitov A; Tyapochkin K; Smorodnikova E; Pravdin P
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transfer learning of CNN-based signal quality assessment from clinical to non-clinical PPG signals.
    Zanelli S; El Yacoubi MA; Hallab M; Ammi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():902-905. PubMed ID: 34891436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient thermal face recognition method using optimized curvelet features for biometric authentication.
    Ali MAS; Meselhy Eltoukhy M; Rajeena P P F; Gaber T
    PLoS One; 2023; 18(6):e0287349. PubMed ID: 37363919
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative study of photoplethysmogram and piezoelectric plethysmogram signals.
    Qananwah Q; Dagamseh A; Alquran H; Ibrahim KS; Alodat M; Hayden O
    Phys Eng Sci Med; 2020 Dec; 43(4):1207-1217. PubMed ID: 32869130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Continuous Identity Authentication Scheme Based on Physiological and Behavioral Characteristics.
    Wu G; Wang J; Zhang Y; Jiang S
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29320463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motion Artifact Reduction In Photoplethysmography For Reliable Signal Selection.
    Mao R; Tweardy M; Wegerich SW; Goergen CJ; Wodicka GR; Zhu F
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5625-5630. PubMed ID: 34892399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Explainability Metrics of Deep Convolutional Networks for Photoplethysmography Quality Assessment.
    Zhang O; Ding C; Pereira T; Xiao R; Gadhoumi K; Meisel K; Lee RJ; Chen Y; Hu X
    IEEE Access; 2021; 9():29736-29745. PubMed ID: 33747683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring the Possibility of Photoplethysmography-Based Human Activity Recognition Using Convolutional Neural Networks.
    Ryu S; Yun S; Lee S; Jeong IC
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An adaptive deep learning approach for PPG-based identification.
    Jindal V; Birjandtalab J; Pouyan MB; Nourani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6401-6404. PubMed ID: 28269713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of respiratory arousals using photoplethysmography (PPG) signal in sleep apnea patients.
    Karmakar C; Khandoker A; Penzel T; Schöbel C; Palaniswami M
    IEEE J Biomed Health Inform; 2014 May; 18(3):1065-73. PubMed ID: 24108482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Instant Stress: Detection of Perceived Mental Stress Through Smartphone Photoplethysmography and Thermal Imaging.
    Cho Y; Julier SJ; Bianchi-Berthouze N
    JMIR Ment Health; 2019 Apr; 6(4):e10140. PubMed ID: 30964440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Secure Online Fingerprint Authentication System for Industrial IoT Devices over 5G Networks.
    Bedari A; Wang S; Yang W
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated Multi-Wavelength Quality Assessment of Photoplethysmography Signals Using Modulation Spectrum Shape Features.
    Tiwari A; Gray G; Bondi P; Mahnam A; Falk TH
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoplethysmographic Subject Identification by Considering Feature Values Derived from Heartbeat and Respiration.
    Hinatsu S; Suzuki D; Ishizuka H; Ikeda S; Oshiro O
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():902-905. PubMed ID: 33018130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PPG Signal Reconstruction Using Deep Convolutional Generative Adversarial Network.
    Wang Y; Azimi I; Kazemi K; Rahmani AM; Liljeberg P
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3387-3391. PubMed ID: 36086184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficiently Updating ECG-Based Biometric Authentication Based on Incremental Learning.
    Kim J; Yang G; Kim J; Lee S; Kim KK; Park C
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A machine learning approach for hypertension detection based on photoplethysmography and clinical data.
    Martinez-Ríos E; Montesinos L; Alfaro-Ponce M
    Comput Biol Med; 2022 Jun; 145():105479. PubMed ID: 35398810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atrial Fibrillation Classification with Smart Wearables Using Short-Term Heart Rate Variability and Deep Convolutional Neural Networks.
    Ramesh J; Solatidehkordi Z; Aburukba R; Sagahyroon A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving the Accuracy in Classification of Blood Pressure from Photoplethysmography Using Continuous Wavelet Transform and Deep Learning.
    Wu J; Liang H; Ding C; Huang X; Huang J; Peng Q
    Int J Hypertens; 2021; 2021():9938584. PubMed ID: 34394983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.