BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38202883)

  • 1. Research on Robot Screwing Skill Method Based on Demonstration Learning.
    Li F; Bai Y; Zhao M; Fu T; Men Y; Song R
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Enhanced Robot Massage System in Smart Homes Using Force Sensing and a Dynamic Movement Primitive.
    Li C; Fahmy A; Li S; Sienz J
    Front Neurorobot; 2020; 14():30. PubMed ID: 32714174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-robot skill transmission for mobile robot via learning by demonstration.
    Li J; Wang J; Wang S; Yang C
    Neural Comput Appl; 2021 Sep; ():1-11. PubMed ID: 34566265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An enhanced teaching interface for a robot using DMP and GMR.
    Li C; Yang C; Ju Z; Annamalai ASK
    Int J Intell Robot Appl; 2018; 2(1):110-121. PubMed ID: 29577074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Improvement of Robot Stiffness-Adaptive Skill Primitive Generalization Using the Surface Electromyography in Human-Robot Collaboration.
    Guan Y; Wang N; Yang C
    Front Neurosci; 2021; 15():694914. PubMed ID: 34594181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on robot force control based on the GMM/GMR algorithm fusing different compensation strategies.
    Xiao M; Zhang X; Zhang T; Chen S; Zou Y; Wu W
    Front Neurorobot; 2024; 18():1290853. PubMed ID: 38348018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peg-in-hole assembly skill imitation learning method based on ProMPs under task geometric representation.
    Zang Y; Wang P; Zha F; Guo W; Zheng C; Sun L
    Front Neurorobot; 2023; 17():1320251. PubMed ID: 38023454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot Learning Method for Human-like Arm Skills Based on the Hybrid Primitive Framework.
    Li J; Han H; Hu J; Lin J; Li P
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Framework for Composite Layup Skill Learning and Generalizing Through Teleoperation.
    Si W; Wang N; Li Q; Yang C
    Front Neurorobot; 2022; 16():840240. PubMed ID: 35250529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalize Robot Learning From Demonstration to Variant Scenarios With Evolutionary Policy Gradient.
    Cao J; Liu W; Liu Y; Yang J
    Front Neurorobot; 2020; 14():21. PubMed ID: 32372940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives.
    Yang C; Chen C; He W; Cui R; Li Z
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):777-787. PubMed ID: 30047914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robot Policy Improvement With Natural Evolution Strategies for Stable Nonlinear Dynamical System.
    Hu Y; Chen G; Li Z; Knoll A
    IEEE Trans Cybern; 2023 Jun; 53(6):4002-4014. PubMed ID: 35930520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A User Study on Robot Skill Learning Without a Cost Function: Optimization of Dynamic Movement Primitives via Naive User Feedback.
    Vollmer AL; Hemion NJ
    Front Robot AI; 2018; 5():77. PubMed ID: 33500956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot complex motion learning based on unsupervised trajectory segmentation and movement primitives.
    Song C; Liu G; Zhang X; Zang X; Xu C; Zhao J
    ISA Trans; 2020 Feb; 97():325-335. PubMed ID: 31395285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontology based autonomous robot task processing framework.
    Ge Y; Zhang S; Cai Y; Lu T; Wang H; Hui X; Wang S
    Front Neurorobot; 2024; 18():1401075. PubMed ID: 38774519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robot Motor Skill Transfer With Alternate Learning in Two Spaces.
    Fu J; Teng X; Cao C; Ju Z; Lou P
    IEEE Trans Neural Netw Learn Syst; 2021 Oct; 32(10):4553-4564. PubMed ID: 32970599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical Task-Parameterized Learning from Demonstration for Collaborative Object Movement.
    Hu S; Kuchenbecker KJ
    Appl Bionics Biomech; 2019; 2019():9765383. PubMed ID: 31885690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning Compliant Box-in-Box Insertion through Haptic-Based Robotic Teleoperation.
    Kana S; Gurnani J; Ramanathan V; Ariffin MZ; Turlapati SH; Campolo D
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning to Avoid Obstacles With Minimal Intervention Control.
    Duan A; Camoriano R; Ferigo D; Huang Y; Calandriello D; Rosasco L; Pucci D
    Front Robot AI; 2020; 7():60. PubMed ID: 33501228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.