These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38202917)

  • 21. A Rolling Bearing Fault Diagnosis Method Based on EEMD-WSST Signal Reconstruction and Multi-Scale Entropy.
    Ge J; Niu T; Xu D; Yin G; Wang Y
    Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new fault feature extraction method of rolling bearings based on the improved self-selection ICEEMDAN-permutation entropy.
    Xiao M; Wang Z; Zhao Y; Geng G; Dustdar S; Donta PK; Ji G
    ISA Trans; 2023 Dec; 143():536-547. PubMed ID: 37770368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion.
    Zhu H; He Z; Wei J; Wang J; Zhou H
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. WPD-Enhanced Deep Graph Contrastive Learning Data Fusion for Fault Diagnosis of Rolling Bearing.
    Liu R; Wang X; Kumar A; Sun B; Zhou Y
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intelligent Fault Diagnosis of Rolling-Element Bearings Using a Self-Adaptive Hierarchical Multiscale Fuzzy Entropy.
    Yan X; Xu Y; Jia M
    Entropy (Basel); 2021 Aug; 23(9):. PubMed ID: 34573753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rope Tension Fault Diagnosis in Hoisting Systems Based on Vibration Signals Using EEMD, Improved Permutation Entropy, and PSO-SVM.
    Xue S; Tan J; Shi L; Deng J
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Novel Intelligent Fault Diagnosis Method for Bearings with Multi-Source Data and Improved GASA.
    Hu Q; Fu X; Guan Y; Wu Q; Liu S
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Personalized Diagnosis Method to Detect Faults in a Bearing Based on Acceleration Sensors and an FEM Simulation Driving Support Vector Machine.
    Liu X; Huang H; Xiang J
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31940822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visibility Graph Feature Model of Vibration Signals: A Novel Bearing Fault Diagnosis Approach.
    Zhang Z; Qin Y; Jia L; Chen X
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30428560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical Fault Diagnosis of HVCBs Based on Multi-Feature Entropy Fusion and Hybrid Classifier.
    Wan S; Chen L; Dou L; Zhou J
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel feature extraction method for bearing fault classification with one dimensional ternary patterns.
    Kuncan M; Kaplan K; Mi Naz MR; Kaya Y; Ertunç HM
    ISA Trans; 2020 May; 100():346-357. PubMed ID: 31732141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Feature Extraction Method Using Improved Multi-Scale Entropy for Rolling Bearing Fault Diagnosis.
    Ju B; Zhang H; Liu Y; Liu F; Lu S; Dai Z
    Entropy (Basel); 2018 Mar; 20(4):. PubMed ID: 33265303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Data Decomposition Techniques with Multi-Scale Permutation Entropy Calculations for Bearing Fault Diagnosis.
    Yasir MN; Koh BH
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diagnosis Methodology Based on Deep Feature Learning for Fault Identification in Metallic, Hybrid and Ceramic Bearings.
    Saucedo-Dorantes JJ; Arellano-Espitia F; Delgado-Prieto M; Osornio-Rios RA
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Comprehensive Fault Diagnosis Method for Rolling Bearings Based on Refined Composite Multiscale Dispersion Entropy and Fast Ensemble Empirical Mode Decomposition.
    Zhang W; Zhou J
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fault Diagnosis of a Rolling Bearing Based on Adaptive Sparest Narrow-Band Decomposition and RefinedComposite Multiscale Dispersion Entropy.
    Luo S; Yang W; Luo Y
    Entropy (Basel); 2020 Mar; 22(4):. PubMed ID: 33286149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intelligent Diagnosis of Rolling Element Bearing Based on Refined Composite Multiscale Reverse Dispersion Entropy and Random Forest.
    Liu A; Yang Z; Li H; Wang C; Liu X
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Refined composite moving average fluctuation dispersion entropy and its application on rolling bearing fault diagnosis.
    Chen Y; Chen J; Qiang Y; Yuan Z; Yang J
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37819206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform.
    Yu X; Ding E; Chen C; Liu X; Li L
    Sensors (Basel); 2015 Nov; 15(11):27869-93. PubMed ID: 26540059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Bearing Fault Diagnosis Method Based on PAVME and MEDE.
    Yan X; Xu Y; She D; Zhang W
    Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.