These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38202937)
21. The Contribution of Machine Learning in the Validation of Commercial Wearable Sensors for Gait Monitoring in Patients: A Systematic Review. Jourdan T; Debs N; Frindel C Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300546 [TBL] [Abstract][Full Text] [Related]
22. Detection of Human Gait Phases Using Textile Pressure Sensors: A Low Cost and Pervasive Approach. Milovic M; Farías G; Fingerhuth S; Pizarro F; Hermosilla G; Yunge D Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458810 [TBL] [Abstract][Full Text] [Related]
23. A Systematic Comparison of Age and Gender Prediction on IMU Sensor-Based Gait Traces. Van Hamme T; Garofalo G; Argones Rúa E; Preuveneers D; Joosen W Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277389 [TBL] [Abstract][Full Text] [Related]
24. A new method proposed for realizing human gait pattern recognition: Inspirations for the application of sports and clinical gait analysis. Xu D; Zhou H; Quan W; Jiang X; Liang M; Li S; Ugbolue UC; Baker JS; Gusztav F; Ma X; Chen L; Gu Y Gait Posture; 2024 Jan; 107():293-305. PubMed ID: 37926657 [TBL] [Abstract][Full Text] [Related]
25. Feature Analysis of Smart Shoe Sensors for Classification of Gait Patterns. Sunarya U; Sun Hariyani Y; Cho T; Roh J; Hyeong J; Sohn I; Kim S; Park C Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147794 [TBL] [Abstract][Full Text] [Related]
26. Lower Limb Locomotion Activity Recognition of Healthy Individuals Using Semi-Markov Model and Single Wearable Inertial Sensor. Li H; Derrode S; Pieczynski W Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569584 [TBL] [Abstract][Full Text] [Related]
27. Feature fusion using deep learning for smartphone based human activity recognition. Thakur D; Biswas S Int J Inf Technol; 2021; 13(4):1615-1624. PubMed ID: 34151135 [TBL] [Abstract][Full Text] [Related]
28. Pre-Processing Effect on the Accuracy of Event-Based Activity Segmentation and Classification through Inertial Sensors. Fida B; Bernabucci I; Bibbo D; Conforto S; Schmid M Sensors (Basel); 2015 Sep; 15(9):23095-109. PubMed ID: 26378544 [TBL] [Abstract][Full Text] [Related]
29. Multi-speed transformer network for neurodegenerative disease assessment and activity recognition. Cheriet M; Dentamaro V; Hamdan M; Impedovo D; Pirlo G Comput Methods Programs Biomed; 2023 Mar; 230():107344. PubMed ID: 36706617 [TBL] [Abstract][Full Text] [Related]
30. Improving gait classification in horses by using inertial measurement unit (IMU) generated data and machine learning. Serra Bragança FM; Broomé S; Rhodin M; Björnsdóttir S; Gunnarsson V; Voskamp JP; Persson-Sjodin E; Back W; Lindgren G; Novoa-Bravo M; Gmel AI; Roepstorff C; van der Zwaag BJ; Van Weeren PR; Hernlund E Sci Rep; 2020 Oct; 10(1):17785. PubMed ID: 33082367 [TBL] [Abstract][Full Text] [Related]
31. IMU, sEMG, or their cross-correlation and temporal similarities: Which signal features detect lateral compensatory balance reactions more accurately? Nouredanesh M; Tung J Comput Methods Programs Biomed; 2019 Dec; 182():105003. PubMed ID: 31465977 [TBL] [Abstract][Full Text] [Related]
32. An Automatic Gait Feature Extraction Method for Identifying Gait Asymmetry Using Wearable Sensors. Anwary AR; Yu H; Vassallo M Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29495299 [TBL] [Abstract][Full Text] [Related]
33. A Phase Variable Approach for IMU-Based Locomotion Activity Recognition. Bartlett HL; Goldfarb M IEEE Trans Biomed Eng; 2018 Jun; 65(6):1330-1338. PubMed ID: 28910754 [TBL] [Abstract][Full Text] [Related]
34. Early Detection of Freezing of Gait during Walking Using Inertial Measurement Unit and Plantar Pressure Distribution Data. Pardoel S; Shalin G; Nantel J; Lemaire ED; Kofman J Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33806984 [TBL] [Abstract][Full Text] [Related]
35. Inertial Sensor Technologies-Their Role in Equine Gait Analysis, a Review. Crecan CM; Peștean CP Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514599 [TBL] [Abstract][Full Text] [Related]
36. Gait Activity Classification on Unbalanced Data from Inertial Sensors Using Shallow and Deep Learning. Lopez-Nava IH; Valentín-Coronado LM; Garcia-Constantino M; Favela J Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842459 [TBL] [Abstract][Full Text] [Related]
37. Wearable sensor-based gait analysis to discriminate early Parkinson's disease from essential tremor. Lin S; Gao C; Li H; Huang P; Ling Y; Chen Z; Ren K; Chen S J Neurol; 2023 Apr; 270(4):2283-2301. PubMed ID: 36725698 [TBL] [Abstract][Full Text] [Related]
38. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance. Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287 [TBL] [Abstract][Full Text] [Related]
39. Machine Learning-Based Diabetic Neuropathy and Previous Foot Ulceration Patients Detection Using Electromyography and Ground Reaction Forces during Gait. Haque F; Reaz MBI; Chowdhury MEH; Ezeddin M; Kiranyaz S; Alhatou M; Ali SHM; Bakar AAA; Srivastava G Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591196 [TBL] [Abstract][Full Text] [Related]
40. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons. Su B; Liu YX; Gutierrez-Farewik EM Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]