These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38202937)
41. Real-Time Classification of Patients with Balance Disorders vs. Normal Subjects Using a Low-Cost Small Wireless Wearable Gait Sensor. Nukala BT; Nakano T; Rodriguez A; Tsay J; Lopez J; Nguyen TQ; Zupancic S; Lie DY Biosensors (Basel); 2016 Nov; 6(4):. PubMed ID: 27916817 [TBL] [Abstract][Full Text] [Related]
42. A Systematic Review of Gait Analysis in the Context of Multimodal Sensing Fusion and AI. Katmah R; Shehhi AA; Jelinek HF; Hulleck AA; Khalaf K IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4189-4202. PubMed ID: 37847624 [TBL] [Abstract][Full Text] [Related]
43. A Multimodal IoT-Based Locomotion Classification System Using Features Engineering and Recursive Neural Network. Javeed M; Mudawi NA; Alabduallah BI; Jalal A; Kim W Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430630 [TBL] [Abstract][Full Text] [Related]
44. The Use of Synthetic IMU Signals in the Training of Deep Learning Models Significantly Improves the Accuracy of Joint Kinematic Predictions. Sharifi Renani M; Eustace AM; Myers CA; Clary CW Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502766 [TBL] [Abstract][Full Text] [Related]
45. Upper-Limb Motion Recognition Based on Hybrid Feature Selection: Algorithm Development and Validation. Li Q; Liu Y; Zhu J; Chen Z; Liu L; Yang S; Zhu G; Zhu B; Li J; Jin R; Tao J; Chen L JMIR Mhealth Uhealth; 2021 Sep; 9(9):e24402. PubMed ID: 34473067 [TBL] [Abstract][Full Text] [Related]
46. Deep Learning Techniques for Improving Digital Gait Segmentation. Gadaleta M; Cisotto G; Rossi M; Ur Rehman RZ; Rochester L; Del Din S Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1834-1837. PubMed ID: 31946254 [TBL] [Abstract][Full Text] [Related]
47. Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors. Jameer S; Syed H Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177523 [TBL] [Abstract][Full Text] [Related]
48. A machine learning approach for the identification of kinematic biomarkers of chronic neck pain during single- and dual-task gait. Jiménez-Grande D; Farokh Atashzar S; Devecchi V; Martinez-Valdes E; Falla D Gait Posture; 2022 Jul; 96():81-86. PubMed ID: 35597050 [TBL] [Abstract][Full Text] [Related]
49. A Wearable Sensor System to Measure Step-Based Gait Parameters for Parkinson's Disease Rehabilitation. Muthukrishnan N; Abbas JJ; Krishnamurthi N Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182658 [TBL] [Abstract][Full Text] [Related]
51. Effective recognition of human lower limb jump locomotion phases based on multi-sensor information fusion and machine learning. Lu Y; Wang H; Hu F; Zhou B; Xi H Med Biol Eng Comput; 2021 Apr; 59(4):883-899. PubMed ID: 33745104 [TBL] [Abstract][Full Text] [Related]
52. Deep Learning-Based Multimodal Data Fusion: Case Study in Food Intake Episodes Detection Using Wearable Sensors. Bahador N; Ferreira D; Tamminen S; Kortelainen J JMIR Mhealth Uhealth; 2021 Jan; 9(1):e21926. PubMed ID: 33507156 [TBL] [Abstract][Full Text] [Related]
53. Evaluation of Vertical Ground Reaction Forces Pattern Visualization in Neurodegenerative Diseases Identification Using Deep Learning and Recurrence Plot Image Feature Extraction. Lin CW; Wen TC; Setiawan F Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664354 [TBL] [Abstract][Full Text] [Related]
54. Multimodal Gait Abnormality Recognition Using a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) Network Based on Multi-Sensor Data Fusion. Li J; Liang W; Yin X; Li J; Guan W Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005489 [TBL] [Abstract][Full Text] [Related]
55. Gait Phase Estimation by Using LSTM in IMU-Based Gait Analysis-Proof of Concept. Sarshar M; Polturi S; Schega L Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502640 [TBL] [Abstract][Full Text] [Related]
56. Ground Contact Time Estimating Wearable Sensor to Measure Spatio-Temporal Aspects of Gait. Bernhart S; Kranzinger S; Berger A; Peternell G Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590822 [TBL] [Abstract][Full Text] [Related]
57. A Unified Local-Global Feature Extraction Network for Human Gait Recognition Using Smartphone Sensors. Das S; Meher S; Sahoo UK Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684589 [TBL] [Abstract][Full Text] [Related]
58. Using Different Combinations of Body-Mounted IMU Sensors to Estimate Speed of Horses-A Machine Learning Approach. Darbandi H; Serra Bragança F; van der Zwaag BJ; Voskamp J; Gmel AI; Haraldsdóttir EH; Havinga P Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530288 [TBL] [Abstract][Full Text] [Related]
59. Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors. Li F; Shirahama K; Nisar MA; Köping L; Grzegorzek M Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29495310 [TBL] [Abstract][Full Text] [Related]
60. IMU-Based Classification of Parkinson's Disease From Gait: A Sensitivity Analysis on Sensor Location and Feature Selection. Caramia C; Torricelli D; Schmid M; Munoz-Gonzalez A; Gonzalez-Vargas J; Grandas F; Pons JL IEEE J Biomed Health Inform; 2018 Nov; 22(6):1765-1774. PubMed ID: 30106745 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]