These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38202960)

  • 1. Study on the Effect of Micro-Force Perturbations and Temperature Fluctuation on Interferometer for the Taiji Program.
    Wang J; Liu HS; Yang C; Qi KQ; Luo ZR; Yang R
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Detection Precision of the Taiji Program by Frequency Setting Strategy Based on a Hierarchical Optimization Algorithm.
    Zhang J; Yang Z; Ma X; Peng X; Gao C; Zhao M; Tang W
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low-noise analog frontend design for the Taiji phasemeter prototype.
    Liu HS; Yu T; Luo ZR
    Rev Sci Instrum; 2021 May; 92(5):054501. PubMed ID: 34243339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Far-field optical path noise coupled with the pointing jitter in the space measurement of gravitational waves.
    Zhao Y; Shen J; Fang C; Wang Z; Gao R; Sha W
    Appl Opt; 2021 Jan; 60(2):438-444. PubMed ID: 33448970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Construction of the Optical Bench Interferometer for the Taiji Program.
    Tao W; Deng X; Diao Y; Gao R; Qi K; Wang S; Luo Z; Sha W; Liu H
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of air refractive index variations in high-resolution interferometry.
    Lazar J; Číp O; Čížek M; Hrabina J; Buchta Z
    Sensors (Basel); 2011; 11(8):7644-55. PubMed ID: 22164036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the resolution limits of spectral interferometric measurements with swept-wavelength interrogation by means of a reference interferometer.
    Ushakov N; Markvart A; Liokumovich L
    Appl Opt; 2015 Jul; 54(19):6029-36. PubMed ID: 26193148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-spacecraft offset frequency setting strategy in the Taiji program.
    Zhang J; Yang Z; Ma X; Peng X; Liu H; Tang W; Zhao M; Gao C; Qiang LE; Han X; Liu B
    Appl Opt; 2022 Jan; 61(3):837-843. PubMed ID: 35200792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic, high-speed, high-precision acquisition scheme with QPD for the Taiji program.
    Gao R; Liu H; Zhao Y; Luo Z; Jin G
    Opt Express; 2021 Jan; 29(2):821-836. PubMed ID: 33726310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer.
    Zhang Y; Hines AS; Valdes G; Guzman F
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common-path interferometer for digital holographic Doppler spectroscopy of living biological tissues.
    Jeong K; Lopera MJ; Turek J; Nolte D
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33783149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating short- and long-term transfer effects of a Taiji beginner course in participants' daily life.
    Schitter AM; Ausfeld-Hafter B; Nedeljkovic M
    J Integr Med; 2013 Sep; 11(5):295-304. PubMed ID: 24063776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the signal-to-noise ratio in a low power self-mixing interferometer using a coupled interferometric effect.
    Yáñez C; Royo S
    Opt Express; 2020 Dec; 28(25):37708-37720. PubMed ID: 33379600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro Fabry-Pérot Interferometer at Rayleigh Range.
    Tsujiie Y; Kawamura Y
    Sci Rep; 2018 Oct; 8(1):15193. PubMed ID: 30315200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fiber-Optic Fabry-Pérot Interferometers for Axial Force Sensing on the Tip of a Needle.
    Beekmans S; Lembrechts T; van den Dobbelsteen J; van Gerwen D
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28035948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency noise properties of lasers for interferometry in nanometrology.
    Hrabina J; Lazar J; Holá M; Cíp O
    Sensors (Basel); 2013 Feb; 13(2):2206-19. PubMed ID: 23435049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser acquisition experimental demonstration for space gravitational wave detection missions.
    Gao R; Liu H; Zhao Y; Luo Z; Shen J; Jin G
    Opt Express; 2021 Mar; 29(5):6368-6383. PubMed ID: 33726160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspheric surface measurement by absolute wavelength scanning interferometry with model-based retrace error correction.
    Stašík M; Kredba J; Nečásek J; Lédl V; Fuchs U; Psota P
    Opt Express; 2023 Apr; 31(8):12449-12462. PubMed ID: 37157404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a hybrid atomic force microscopic measurement system combined with white light scanning interferometry.
    Guo T; Wang S; Dorantes-Gonzalez DJ; Chen J; Fu X; Hu X
    Sensors (Basel); 2012; 12(1):175-188. PubMed ID: 22368463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-line fiber optic interferometric sensors in single-mode fibers.
    Zhu T; Wu D; Liu M; Duan DW
    Sensors (Basel); 2012; 12(8):10430-49. PubMed ID: 23112608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.