These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38202969)

  • 1. Investigation on the Impact of Excitation Amplitude on AFM-TM Microcantilever Beam System's Dynamic Characteristics and Implementation of an Equivalent Circuit.
    Song P; Li X; Cui J; Chen K; Chu Y
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects.
    Zhang WM; Meng G; Zhou JB; Chen JY
    Sensors (Basel); 2009; 9(5):3854-74. PubMed ID: 22412340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation of atomic force microscope microcantilever in the tapping mode utilizing couple stress theory.
    Abbasi M
    Micron; 2018 Apr; 107():20-27. PubMed ID: 29414132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Squeeze Film Damping Effect on Different Microcantilever Probes in Tapping Mode Atomic Force Microscope.
    Sun Y; Liu J; Wang K; Wei Z
    Scanning; 2020; 2020():8818542. PubMed ID: 33282055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed-mode oscillations of an atomic force microscope in tapping mode.
    Song P; Li X; Cui J; Chen K; Chu Y
    Chaos; 2024 Jun; 34(6):. PubMed ID: 38885069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of the higher eigenmodes of a microcantilever: applications in atomic force microscopy.
    Karvinen KS; Moheimani SO
    Ultramicroscopy; 2014 Feb; 137():66-71. PubMed ID: 24361530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-element vibration analysis of tapping-mode atomic force microscopy in liquid.
    Song Y; Bhushan B
    Ultramicroscopy; 2007 Oct; 107(10-11):1095-104. PubMed ID: 17566661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the optical lever sensitivity of microcantilevers for dynamic atomic force microscopy via integrated low frequency paddles.
    Shaik NH; Reifenberger RG; Raman A
    Nanotechnology; 2016 May; 27(19):195502. PubMed ID: 27040811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.
    Deng W; Zhang GM; Murphy MF; Lilley F; Harvey DM; Burton DR
    Microsc Res Tech; 2015 Oct; 78(10):935-46. PubMed ID: 26303510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailored Microcantilever Optimization for Multifrequency Force Microscopy.
    Bhattacharya G; Lionadi I; Stevenson A; Ward J; Payam AF
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303476. PubMed ID: 37867232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperelastic Microcantilever AFM: Efficient Detection Mechanism Based on Principal Parametric Resonance.
    Alibakhshi A; Rahmanian S; Dastjerdi S; Malikan M; Karami B; Akgöz B; Civalek Ö
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range.
    Çelik Ü; Karcı Ö; Uysallı Y; Özer HÖ; Oral A
    Rev Sci Instrum; 2017 Jan; 88(1):013705. PubMed ID: 28147654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor.
    Körner J
    Beilstein J Nanotechnol; 2018; 9():2546-2560. PubMed ID: 30345217
    [No Abstract]   [Full Text] [Related]  

  • 14. Influence of the tip mass and position on the AFM cantilever dynamics: coupling between bending, torsion and flexural modes.
    Mokhtari-Nezhad F; Saidi AR; Ziaei-Rad S
    Ultramicroscopy; 2009 Aug; 109(9):1193-202. PubMed ID: 19559530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayered non-uniform atomic force microscope piezoelectric microcantilever control and vibration analysis considering different excitation based on the modified couple stress theory.
    Habibnejad Korayem M; Hashemi A; Habibnejad Korayem A
    Microsc Res Tech; 2021 May; 84(5):943-954. PubMed ID: 33231341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale cutting using self-excited microcantilever.
    Yang R; Ogura I; Jiang Z; An L; Ashida K; Yabuno H
    Sci Rep; 2022 Jan; 12(1):618. PubMed ID: 35022414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the Dynamic Characteristics of a Micro-Piezoelectric Bimorph Beam Based on an Admittance Test.
    Zheng T; Chen S; Lei L; Deng Z; Zhang C; Yang X; Zou H; Xu M
    Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and measurement of geometrically nonlinear damping in a microcantilever-nanotube system.
    Jeong B; Cho H; Yu MF; Vakakis AF; McFarland DM; Bergman LA
    ACS Nano; 2013 Oct; 7(10):8547-53. PubMed ID: 24010552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dynamic model of the jump-to phenomenon during AFM analysis.
    Bowen J; Cheneler D
    Langmuir; 2012 Dec; 28(50):17273-86. PubMed ID: 23157559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the excitation frequency for high probe sensitivity in single-eigenmode and bimodal tapping-mode AFM.
    Eslami B; López-Guerra EA; Diaz AJ; Solares SD
    Nanotechnology; 2015 Apr; 26(16):165703. PubMed ID: 25825001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.