These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38202970)

  • 1. Generating Edge Cases for Testing Autonomous Vehicles Using Real-World Data.
    Karunakaran D; Berrio Perez JS; Worrall S
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Event-Based Simulation Scenario Generation Approach for Autonomous Vehicle Smart Sensors and Devices.
    Park J; Wen M; Sung Y; Cho K
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31615164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous driving testing scenario generation based on in-depth vehicle-to-powered two-wheeler crash data in China.
    Wang X; Peng Y; Xu T; Xu Q; Wu X; Xiang G; Yi S; Wang H
    Accid Anal Prev; 2022 Oct; 176():106812. PubMed ID: 36054982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crash comparison of autonomous and conventional vehicles using pre-crash scenario typology.
    Liu Q; Wang X; Wu X; Glaser Y; He L
    Accid Anal Prev; 2021 Sep; 159():106281. PubMed ID: 34273622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review on Functional Testing Scenario Library Generation for Connected and Automated Vehicles.
    Zhu Y; Wang J; Meng F; Liu T
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying typical pre-crash scenarios based on in-depth crash data with deep embedded clustering for autonomous vehicle safety testing.
    Zhou R; Huang H; Lee J; Huang X; Chen J; Zhou H
    Accid Anal Prev; 2023 Oct; 191():107218. PubMed ID: 37467602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dynamic test scenario generation method for autonomous vehicles based on conditional generative adversarial imitation learning.
    Jia L; Yang D; Ren Y; Qian C; Feng Q; Sun B; Wang Z
    Accid Anal Prev; 2024 Jan; 194():107279. PubMed ID: 37897956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Safety evaluation method in multi-logical scenarios for automated vehicles based on naturalistic driving trajectory.
    Zhang P; Zhu B; Zhao J; Fan T; Sun Y
    Accid Anal Prev; 2023 Feb; 180():106926. PubMed ID: 36543079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity control in car-following behavior with autonomous vehicles using reinforcement learning.
    Wang Z; Huang H; Tang J; Meng X; Hu L
    Accid Anal Prev; 2022 Sep; 174():106729. PubMed ID: 35700685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Framework for Generating Driving Safety Assessment Scenarios for Automated Vehicles.
    Ko W; Park S; Yun J; Park S; Yun I
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical voxel learning with vision transformer and derivation of logical AV safety assessment scenarios.
    Kang M; Seo J; Hwang K; Yoon Y
    Accid Anal Prev; 2024 Feb; 195():107422. PubMed ID: 38064940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloud2Edge Elastic AI Framework for Prototyping and Deployment of AI Inference Engines in Autonomous Vehicles.
    Grigorescu S; Cocias T; Trasnea B; Margheri A; Lombardi F; Aniello L
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research into Autonomous Vehicles Following and Obstacle Avoidance Based on Deep Reinforcement Learning Method under Map Constraints.
    Li Z; Yuan S; Yin X; Li X; Tang S
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on the Physics-Intelligence Hybrid Theory Based Dynamic Scenario Library Generation for Automated Vehicles.
    Zhang Y; Sun B; Li Y; Zhao S; Zhu X; Ma W; Ma F; Wu L
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dense reinforcement learning for safety validation of autonomous vehicles.
    Feng S; Sun H; Yan X; Zhu H; Zou Z; Shen S; Liu HX
    Nature; 2023 Mar; 615(7953):620-627. PubMed ID: 36949337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the associations between driving volatility and autonomous vehicle hazardous scenarios: Insights from field operational test data.
    Yu R; Li S
    Accid Anal Prev; 2022 Mar; 166():106537. PubMed ID: 34952369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of pre-crash scenarios and contributing factors for autonomous vehicle crashes at intersections.
    Liu Q; Wang X; Liu S; Yu C; Glaser Y
    Accid Anal Prev; 2024 Feb; 195():107383. PubMed ID: 37984113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of functional scenarios for intersection collisions.
    Bangert LG; Lubash T; Scanlon JM; Kusano KD; Riexinger LE
    Accid Anal Prev; 2023 Dec; 193():107326. PubMed ID: 37793217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement Learning-Based Autonomous Driving at Intersections in CARLA Simulator.
    Gutiérrez-Moreno R; Barea R; López-Guillén E; Araluce J; Bergasa LM
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of On-Demand Shared Autonomous Vehicle Deployments Utilizing Reinforcement Learning.
    Meneses-Cime K; Aksun Guvenc B; Guvenc L
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.