These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38203117)

  • 1. Design, Analysis, and Development of Low-Cost State-of-the-Art Magnetorheological-Based Microprocessor Prosthetic Knee.
    Qadir MU; Haq IU; Khan MA; Shah K; Chouikhi H; Ismail MA
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.
    Cao W; Yu H; Zhao W; Meng Q; Chen W
    Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees.
    Theeven P; Hemmen B; Rings F; Meys G; Brink P; Smeets R; Seelen H
    J Rehabil Med; 2011 Oct; 43(10):906-15. PubMed ID: 21947182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pilot study of the microprocessor-controlled prosthetic knee with a novel hydraulic damper.
    Zhang Y; Cao W; Yu H; Meng Q; Chen W
    Technol Health Care; 2020; 28(1):93-97. PubMed ID: 31476188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study.
    Hasenoehrl T; Schmalz T; Windhager R; Domayer S; Dana S; Ambrozy C; Palma S; Crevenna R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):157-165. PubMed ID: 28399722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation.
    Fuenzalida Squella SA; Kannenberg A; Brandão Benetti Â
    Prosthet Orthot Int; 2018 Apr; 42(2):228-235. PubMed ID: 28691574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benefits of the Genium microprocessor controlled prosthetic knee on ambulation, mobility, activities of daily living and quality of life: a systematic literature review.
    Mileusnic MP; Rettinger L; Highsmith MJ; Hahn A
    Disabil Rehabil Assist Technol; 2021 Jul; 16(5):453-464. PubMed ID: 31469023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does a microprocessor-controlled prosthetic knee affect stair ascent strategies in persons with transfemoral amputation?
    Aldridge Whitehead JM; Wolf EJ; Scoville CR; Wilken JM
    Clin Orthop Relat Res; 2014 Oct; 472(10):3093-101. PubMed ID: 24515402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using a microprocessor knee (C-Leg) with appropriate foot transitioned individuals with dysvascular transfemoral amputations to higher performance levels: a longitudinal randomized clinical trial.
    Jayaraman C; Mummidisetty CK; Albert MV; Lipschutz R; Hoppe-Ludwig S; Mathur G; Jayaraman A
    J Neuroeng Rehabil; 2021 May; 18(1):88. PubMed ID: 34034753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system.
    Abdulhasan ZM; Scally AJ; Buckley JG
    Clin Biomech (Bristol); 2018 Aug; 57():35-41. PubMed ID: 29908391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absent loading response knee flexion: The impact on gait kinetics and centre of mass motion in individuals with unilateral transfemoral amputation, and the effect of microprocessor controlled knee provision.
    Carse B; Hebenton J; Brady L; Davie-Smith F
    Clin Biomech (Bristol); 2023 Aug; 108():106061. PubMed ID: 37556922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survey of transfemoral amputee experience and priorities for the user-centered design of powered robotic transfemoral prostheses.
    Fanciullacci C; McKinney Z; Monaco V; Milandri G; Davalli A; Sacchetti R; Laffranchi M; De Michieli L; Baldoni A; Mazzoni A; Paternò L; Rosini E; Reale L; Trecate F; Crea S; Vitiello N; Gruppioni E
    J Neuroeng Rehabil; 2021 Dec; 18(1):168. PubMed ID: 34863213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost-effectiveness and budget impact of the microprocessor-controlled knee C-Leg in transfemoral amputees with and without diabetes mellitus.
    Kuhlmann A; Krüger H; Seidinger S; Hahn A
    Eur J Health Econ; 2020 Apr; 21(3):437-449. PubMed ID: 31897813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subject-specific responses to an adaptive ankle prosthesis during incline walking.
    Lamers EP; Eveld ME; Zelik KE
    J Biomech; 2019 Oct; 95():109273. PubMed ID: 31431348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological parameters analysis of transfemoral amputees with different prosthetic knees.
    Li S; Cao W; Yu H; Meng Q; Chen W
    Acta Bioeng Biomech; 2019; 21(3):135-142. PubMed ID: 31798017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in knee flexion between the Genium and C-Leg microprocessor knees while walking on level ground and ramps.
    Lura DJ; Wernke MM; Carey SL; Kahle JT; Miro RM; Highsmith MJ
    Clin Biomech (Bristol); 2015 Feb; 30(2):175-81. PubMed ID: 25537443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra-individual biomechanical effects of a non-microprocessor-controlled stance-yielding prosthetic knee during ramp descent in persons with unilateral transfemoral amputation.
    Okita Y; Yamasaki N; Nakamura T; Mita T; Kubo T; Mitsumoto A; Akune T
    Prosthet Orthot Int; 2019 Feb; 43(1):55-61. PubMed ID: 30051754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.