These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 38203117)
21. Reduced cortical brain activity with the use of microprocessor-controlled prosthetic knees during walking. Möller S; Rusaw D; Hagberg K; Ramstrand N Prosthet Orthot Int; 2019 Jun; 43(3):257-265. PubMed ID: 30375285 [TBL] [Abstract][Full Text] [Related]
22. Kinetic adaptations of the intact limb in transfemoral amputees using a microprocessor prosthetic knee. Persine S; Leteneur S; Gillet C; Bassement J; Charlaté F; Simoneau-Buessinger E Gait Posture; 2024 Feb; 108():170-176. PubMed ID: 38100955 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee. Hafner BJ; Willingham LL; Buell NC; Allyn KJ; Smith DG Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519 [TBL] [Abstract][Full Text] [Related]
24. Impacts of Microprocessor-Controlled Versus Non-microprocessor-Controlled Prosthetic Knee Joints Among Transfemoral Amputees on Functional Outcomes: A Comparative Study. Alzeer AM; Bhaskar Raj N; Shahine EM; Nadiah WA Cureus; 2022 Apr; 14(4):e24331. PubMed ID: 35607529 [TBL] [Abstract][Full Text] [Related]
25. The effects of domestic mechanical knee joints on pelvic motion in transfemoral amputees. Alsancak S; Guner S; Celebi F Disabil Rehabil Assist Technol; 2021 Jul; 16(5):446-452. PubMed ID: 31368830 [TBL] [Abstract][Full Text] [Related]
26. Perceived self-efficacy and specific self-reported outcomes in persons with lower-limb amputation using a non-microprocessor-controlled versus a microprocessor-controlled prosthetic knee. Möller S; Hagberg K; Samulesson K; Ramstrand N Disabil Rehabil Assist Technol; 2018 Apr; 13(3):220-225. PubMed ID: 28366038 [TBL] [Abstract][Full Text] [Related]
27. [Function of prosthesis components in lower limb amputees with bone-anchored percutaneous implants : Biomechanical aspects]. Blumentritt S Unfallchirurg; 2017 May; 120(5):385-394. PubMed ID: 28280845 [TBL] [Abstract][Full Text] [Related]
28. Energy expenditure and activity of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Kaufman KR; Levine JA; Brey RH; McCrady SK; Padgett DJ; Joyner MJ Arch Phys Med Rehabil; 2008 Jul; 89(7):1380-5. PubMed ID: 18586142 [TBL] [Abstract][Full Text] [Related]
29. Are Gait Parameters for Through-knee Amputees Different From Matched Transfemoral Amputees? Schuett DJ; Wyatt MP; Kingsbury T; Thesing N; Dromsky DM; Kuhn KM Clin Orthop Relat Res; 2019 Apr; 477(4):821-825. PubMed ID: 30811368 [TBL] [Abstract][Full Text] [Related]
30. Prosthetic gait of unilateral lower-limb amputees with current and novel prostheses: A pilot study. De Pauw K; Serrien B; Baeyens JP; Cherelle P; De Bock S; Ghillebert J; Bailey SP; Lefeber D; Roelands B; Vanderborght B; Meeusen R Clin Biomech (Bristol); 2020 Jan; 71():59-67. PubMed ID: 31704536 [TBL] [Abstract][Full Text] [Related]
31. The biomechanical response of persons with transfemoral amputation to variations in prosthetic knee alignment during level walking. Koehler-McNicholas SR; Lipschutz RD; Gard SA J Rehabil Res Dev; 2016; 53(6):1089-1106. PubMed ID: 28355034 [TBL] [Abstract][Full Text] [Related]
32. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees. Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984 [TBL] [Abstract][Full Text] [Related]
33. Factors associated with a risk of prosthetic knee buckling during walking in unilateral transfemoral amputees. Hisano G; Hashizume S; Kobayashi Y; Murai A; Kobayashi T; Nakashima M; Hobara H Gait Posture; 2020 Mar; 77():69-74. PubMed ID: 31999980 [TBL] [Abstract][Full Text] [Related]
34. Comparative biomechanical analysis of current microprocessor-controlled prosthetic knee joints. Bellmann M; Schmalz T; Blumentritt S Arch Phys Med Rehabil; 2010 Apr; 91(4):644-52. PubMed ID: 20382300 [TBL] [Abstract][Full Text] [Related]
35. Influence of advanced prosthetic knee joints on perceived performance and everyday life activity level of low-functional persons with a transfemoral amputation or knee disarticulation. Theeven PJ; Hemmen B; Geers RP; Smeets RJ; Brink PR; Seelen HA J Rehabil Med; 2012 May; 44(5):454-61. PubMed ID: 22549656 [TBL] [Abstract][Full Text] [Related]
36. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms. Struchkov V; Buckley JG Clin Biomech (Bristol); 2016 Feb; 32():164-70. PubMed ID: 26689894 [TBL] [Abstract][Full Text] [Related]
37. Functional assessment and satisfaction of transfemoral amputees with low mobility (FASTK2): A clinical trial of microprocessor-controlled vs. non-microprocessor-controlled knees. Kaufman KR; Bernhardt KA; Symms K Clin Biomech (Bristol); 2018 Oct; 58():116-122. PubMed ID: 30077128 [TBL] [Abstract][Full Text] [Related]
38. Design, Kinematics and Gait Analysis, of Prosthetic Knee Joints: A Systematic Review. Rasheed F; Martin S; Tse KM Bioengineering (Basel); 2023 Jun; 10(7):. PubMed ID: 37508800 [TBL] [Abstract][Full Text] [Related]
39. Effects of walking speed and prosthetic knee control type on external mechanical work in transfemoral prosthesis users. Pinhey SR; Murata H; Hisano G; Ichimura D; Hobara H; Major MJ J Biomech; 2022 Mar; 134():110984. PubMed ID: 35182901 [TBL] [Abstract][Full Text] [Related]
40. Comparative biomechanical evaluation of two technologically different microprocessor-controlled prosthetic knee joints in safety-relevant daily-life situations. Bellmann M; Köhler TM; Schmalz T Biomed Tech (Berl); 2019 Aug; 64(4):407-420. PubMed ID: 30540556 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]