BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38203573)

  • 1. The Transcription Factor StuA Regulates the Glyoxylate Cycle in the Dermatophyte
    Petrucelli MF; Martins-Santana L; Sanches PR; Oliveira VM; Rossi A; Martinez-Rossi NM
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203573
    [No Abstract]   [Full Text] [Related]  

  • 2. The StuA Transcription Factor and Alternative Splicing Mechanisms Drive the Levels of MAPK Hog1 Transcripts in the Dermatophyte Trichophyton rubrum.
    Martins-Santana L; Petrucelli MF; Sanches PR; Almeida F; Martinez-Rossi NM; Rossi A
    Mycopathologia; 2024 May; 189(3):37. PubMed ID: 38704808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptidase Regulation in
    Martins-Santana L; Petrucelli MF; Sanches PR; Martinez-Rossi NM; Rossi A
    Front Microbiol; 2022; 13():930398. PubMed ID: 35783403
    [No Abstract]   [Full Text] [Related]  

  • 4. Gene expression profiling in the human pathogenic dermatophyte Trichophyton rubrum during growth on proteins.
    Zaugg C; Monod M; Weber J; Harshman K; Pradervand S; Thomas J; Bueno M; Giddey K; Staib P
    Eukaryot Cell; 2009 Feb; 8(2):241-50. PubMed ID: 19098130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes.
    Wendisch VF; Spies M; Reinscheid DJ; Schnicke S; Sahm H; Eikmanns BJ
    Arch Microbiol; 1997 Oct; 168(4):262-9. PubMed ID: 9297462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical Validation of the Glyoxylate Cycle in the Cyanobacterium Chlorogloeopsis fritschii Strain PCC 9212.
    Zhang S; Bryant DA
    J Biol Chem; 2015 May; 290(22):14019-30. PubMed ID: 25869135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stuA gene controls development, adaptation, stress tolerance, and virulence of the dermatophyte Trichophyton rubrum.
    Lang EAS; Bitencourt TA; Peres NTA; Lopes L; Silva LG; Cazzaniga RA; Rossi A; Martinez-Rossi NM
    Microbiol Res; 2020 Dec; 241():126592. PubMed ID: 33002720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caffeic acid and licochalcone A interfere with the glyoxylate cycle of Trichophyton rubrum.
    Cantelli BAM; Bitencourt TA; Komoto TT; Beleboni RO; Marins M; Fachin AL
    Biomed Pharmacother; 2017 Dec; 96():1389-1394. PubMed ID: 29174577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. StuA-Regulated Processes in the Dermatophyte
    Bitencourt TA; Neves-da-Rocha J; Martins MP; Sanches PR; Lang EAS; Bortolossi JC; Rossi A; Martinez-Rossi NM
    Front Cell Infect Microbiol; 2021; 11():643659. PubMed ID: 34169004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium and lithium exert differential effects on the central carbon metabolism of Debaryomyces hansenii through the glyoxylate shunt regulation.
    Ruiz-Pérez FS; Ruiz-Castilla FJ; Leal C; Martínez JL; Ramos J
    Yeast; 2023 Jul; 40(7):265-275. PubMed ID: 37170862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operation of glyoxylate cycle in halophilic archaea: presence of malate synthase and isocitrate lyase in Haloferax volcanii.
    Serrano JA; Camacho M; Bonete MJ
    FEBS Lett; 1998 Aug; 434(1-2):13-6. PubMed ID: 9738442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of null mutants of the glyoxylate cycle and gluconeogenic enzymes in S. cerevisiae through metabolic network modeling verified by chemostat cultivation.
    Stückrath I; Lange HC; Kötter P; van Gulik WM; Entian KD; Heijnen JJ
    Biotechnol Bioeng; 2002 Jan; 77(1):61-72. PubMed ID: 11745174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the glyoxylate pathway in acetic acid production by Acetobacter aceti.
    Sakurai K; Yamazaki S; Ishii M; Igarashi Y; Arai H
    J Biosci Bioeng; 2013 Jan; 115(1):32-6. PubMed ID: 22902276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isocitrate lyase and malate synthase in Pseudomonas indigofera. I. Suppression and stimulation during growth.
    HOWES WV; McFADDEN BA
    J Bacteriol; 1962 Dec; 84(6):1216-21. PubMed ID: 13955177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of acetate metabolism by protein phosphorylation in enteric bacteria.
    Cozzone AJ
    Annu Rev Microbiol; 1998; 52():127-64. PubMed ID: 9891796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Malate synthase contributes to the survival of Salmonella Typhimurium against nutrient and oxidative stress conditions.
    Sarkhel R; Apoorva S; Priyadarsini S; Sridhar HB; Bhure SK; Mahawar M
    Sci Rep; 2022 Sep; 12(1):15979. PubMed ID: 36155623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative fate of glyoxylate during acetate and hexadecane metabolism in Acinetobacter oleivorans DR1.
    Park C; Shin B; Park W
    Sci Rep; 2019 Oct; 9(1):14402. PubMed ID: 31591464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a bifunctional glyoxylate cycle enzyme, malate synthase/isocitrate lyase, of Euglena gracilis.
    Nakazawa M; Nishimura M; Inoue K; Ueda M; Inui H; Nakano Y; Miyatake K
    J Eukaryot Microbiol; 2011; 58(2):128-33. PubMed ID: 21332878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of Nutrient-Sensing in the Pathogenesis of
    Cruz AHS; Santos RS; Martins MP; Peres NTA; Trevisan GL; Mendes NS; Martinez-Rossi NM; Rossi A
    Front Fungal Biol; 2022; 3():858968. PubMed ID: 37746184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription profile of Trichophyton rubrum conidia grown on keratin reveals the induction of an adhesin-like protein gene with a tandem repeat pattern.
    Bitencourt TA; Macedo C; Franco ME; Assis AF; Komoto TT; Stehling EG; Beleboni RO; Malavazi I; Marins M; Fachin AL
    BMC Genomics; 2016 Mar; 17():249. PubMed ID: 26993619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.