BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 38203654)

  • 1. Central Role of β-1,4-GalT-V in Cancer Signaling, Inflammation, and Other Disease-Centric Pathways.
    Chatterjee S; Yuan R; Thapa S; Talwar R
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convergence: Lactosylceramide-Centric Signaling Pathways Induce Inflammation, Oxidative Stress, and Other Phenotypic Outcomes.
    Chatterjee S; Balram A; Li W
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33673027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidized low density lipoprotein stimulates aortic smooth muscle cell proliferation.
    Chatterjee S; Ghosh N
    Glycobiology; 1996 Apr; 6(3):303-11. PubMed ID: 8724138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingolipids in atherosclerosis and vascular biology.
    Chatterjee S
    Arterioscler Thromb Vasc Biol; 1998 Oct; 18(10):1523-33. PubMed ID: 9763522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UDPgalactose:glucosylceramide beta 1----4-galactosyltransferase activity in human proximal tubular cells from normal and familial hypercholesterolemic homozygotes.
    Chatterjee S; Castiglione E
    Biochim Biophys Acta; 1987 Jan; 923(1):136-42. PubMed ID: 3099851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platelet derived growth factor recruits lactosylceramide to induce cell proliferation in UDP Gal:GlcCer: beta1 --> 4Galactosyltransferase (GalT-V) mutant Chinese hamster ovary cells.
    Kolmakova A; Chatterjee S
    Glycoconj J; 2005 Nov; 22(7-9):401-7. PubMed ID: 16311884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide sugar profiles throughout development in wildtype and galt knockout zebrafish.
    Haskovic M; Coelho AI; Lindhout M; Zijlstra F; Veizaj R; Vos R; Vanoevelen JM; Bierau J; Lefeber DJ; Rubio-Gozalbo ME
    J Inherit Metab Dis; 2020 Sep; 43(5):994-1001. PubMed ID: 32441338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Regulation of human β-1,4-galactosyltransferase V gene expression in cancer cells].
    Sato T; Furukawa K
    Yakugaku Zasshi; 2012; 132(6):691-7. PubMed ID: 22687727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactosylceramide synthase β-1,4-GalT-V: A novel target for the diagnosis and therapy of human colorectal cancer.
    Chatterjee SB; Hou J; Bandaru VVR; Pezhouh MK; Syed Rifat Mannan AA; Sharma R
    Biochem Biophys Res Commun; 2019 Jan; 508(2):380-386. PubMed ID: 30502090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidized low density lipoproteins stimulate galactosyltransferase activity, ras activation, p44 mitogen activated protein kinase and c-fos expression in aortic smooth muscle cells.
    Chatterjee S; Bhunia AK; Snowden A; Han H
    Glycobiology; 1997 Jul; 7(5):703-10. PubMed ID: 9254052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a biologically active component in minimally oxidized low density lipoprotein (MM-LDL) responsible for aortic smooth muscle cell proliferation.
    Chatterjee S; Berliner JA; Subbanagounder GG; Bhunia AK; Koh S
    Glycoconj J; 2004; 20(5):331-8. PubMed ID: 15229397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GALT deficiency causes UDP-hexose deficit in human galactosemic cells.
    Lai K; Langley SD; Khwaja FW; Schmitt EW; Elsas LJ
    Glycobiology; 2003 Apr; 13(4):285-94. PubMed ID: 12626383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidized low density lipoproteins and lactosylceramide both stimulate the expression of proliferating cell nuclear antigen and the proliferation of aortic smooth muscle cells.
    Chatterjee S
    Indian J Biochem Biophys; 1997; 34(1-2):56-60. PubMed ID: 9343929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification of uridine diphosphate-galactose:glucosyl ceramide, beta 1-4 galactosyltransferase from human kidney.
    Chatterjee S; Ghosh N; Khurana S
    J Biol Chem; 1992 Apr; 267(10):7148-53. PubMed ID: 1551920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overelaborated synaptic architecture and reduced synaptomatrix glycosylation in a Drosophila classic galactosemia disease model.
    Jumbo-Lucioni P; Parkinson W; Broadie K
    Dis Model Mech; 2014 Dec; 7(12):1365-78. PubMed ID: 25326312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of murine β-1,4-galactosyltransferase V in lactosylceramide biosynthesis.
    Kumagai T; Sato T; Natsuka S; Kobayashi Y; Zhou D; Shinkai T; Hayakawa S; Furukawa K
    Glycoconj J; 2010 Oct; 27(7-9):685-95. PubMed ID: 21057870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordinated movement, neuromuscular synaptogenesis and trans-synaptic signaling defects in Drosophila galactosemia models.
    Jumbo-Lucioni PP; Parkinson WM; Kopke DL; Broadie K
    Hum Mol Genet; 2016 Sep; 25(17):3699-3714. PubMed ID: 27466186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel role of lactosylceramide in the regulation of lipopolysaccharide/interferon-gamma-mediated inducible nitric oxide synthase gene expression: implications for neuroinflammatory diseases.
    Pannu R; Won JS; Khan M; Singh AK; Singh I
    J Neurosci; 2004 Jun; 24(26):5942-54. PubMed ID: 15229242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of lactosylceramide synthase (glucosylceramide beta1-->4 galactosyltransferase); implication as a drug target.
    Chatterjee S; Kolmakova A; Rajesh M
    Curr Drug Targets; 2008 Apr; 9(4):272-81. PubMed ID: 18393821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of glycosphingolipid glycosyltransferase by low density lipoprotein receptors in cultured human proximal tubular cells.
    Chatterjee S; Ghosh N; Castiglione E; Kwiterovich PO
    J Biol Chem; 1988 Sep; 263(26):13017-22. PubMed ID: 2458339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.